• 제목/요약/키워드: skewed Student-t 분포

검색결과 3건 처리시간 0.014초

호주 금융시장 변동성의 장기기억 특성: VaR 접근법 (Long Memory Properties in the Volatility of Australian Financial Markets: A VaR Approach)

  • 강상훈;윤성민
    • 국제지역연구
    • /
    • 제12권2호
    • /
    • pp.3-26
    • /
    • 2008
  • 본 논문은 호주 금융시장의 두 가지 시계열(ASX200 주가지수와 AUD/USD 환율)의 수익률 자료에 존재할 수 있는 장기기억 변동성 특성을 모형화하는 데 skewed Student-t 분포가 유용한지를 연구한다. 이러한 연구목적을 위하여 FIGARCH 및 FIAPARCH Value-at-Risk (VaR) 모형을 교란항에 대한 정규분포, Student-t 분포 및 치우친 Student-t 분포 가정하에서 평가한다. 실증분석 결과 skewed Student-t 분포 모형이 정규분포 모형이나 Student-t 분포 모형보다 호주 금융시장의 VaR을 더 정확하게 추정한다는 발견하였다. 따라서 자산 수익률 분포의 왜도 및 첨도를 고려하는 것은 호주 주식시장과 외환시장의 장기기억 변동성 모형을 검토할 때 적절한 모형선택 기준을 제공한다는 것을 알 수 있다.

원유시장 분석을 위한 VaR 모형 (Value-at-Risk Models in Crude Oil Markets)

  • 강상훈;윤성민
    • 자원ㆍ환경경제연구
    • /
    • 제16권4호
    • /
    • pp.947-978
    • /
    • 2007
  • 본 연구에서는 원유시장의 변동성 분석에 적용될 수 있는 VaR(Value-at-Risk) 접근법을 고찰한다. 그리고 다양한 VaR 모형들(RiskMetrics, GARCH, IGARCH와 FIGARCH 모형)의 성과를 정규분포와 치우친 Student-t 분포 가정 하에서 평가한다. Brent 및 Dubai 시장의 일별가격 자료를 이용한 실증분석 결과에 따르면, FIGARCH 모형이 GARCH 모형이나 IGARCH 모형보다 원유시장의 변동성에 내재되어 있는 장기기억 특성을 잘 반영한다는 점에서 더 우월한 것으로 나타났다. 이러한 사실은 원유시장 수익률의 변동성에는 장기기억이 존재한다는 것을 의미한다. 그리고 VaR 분석 결과, 치우친 Student-t 분포 가정 하에서 추정되는 FIGARCH 모형이 롱 포지션과 숏 포지션 모두에서 정규분포 가정 하에서 추정되는 다른 변동성 모형들보다 원유시장에서의 투자 위험을 더 정확하게 예측하는 것으로 나타났다. 이러한 사실은 치우친 Student-t 분포 가정이 원유시장 수익률 분포에 내재되어 있는 비정상적 왜도와 첨도를 모형화하는데 더 적합하다는 것을 의미한다. 이와 같은 발견은 원유시장 구매자 및 판매자들이 원유가격의 움직임을 올바르게 측정하고 VaR을 정확하게 추정하는데 도움을 줄 것이다.

  • PDF

기운 일반화 t 분포를 이용한 이진 데이터 회귀 분석 (Binary regression model using skewed generalized t distributions)

  • 김미정
    • 응용통계연구
    • /
    • 제30권5호
    • /
    • pp.775-791
    • /
    • 2017
  • 이진 데이터는 일상 생활에서 자주 접할 수 있는 데이터이다. 이진 데이터를 회귀 분석하는 방법으로 로지스틱(Logistic), 프로빗(Probit), Cauchit, Complementary log-log 모형이 주로 쓰이는데, 이 방법 이외에도 Liu(2004)가 제시한 t 분포를 이용한 로빗(Robit) 모형, Kim 등 (2008)에서 제시한 일반화 t-link 모형을 이용한 방법 등이 있다. 유연한 분포를 이용하면 유연한 회귀 모형이 가능해지는 점에 착안하여, 이 논문에서는 Theodossiou(1998)에서 제시된 기운 일반화 t 분포 (Skewed Generalized t Distribution)의 이용하여 우도 함수를 최대로 하는 이진 데이터 회귀 모형을 소개한다. 기운 일반화 t 분포를 R glm 함수, R sgt 패키지를 연결하여 이 논문에서 제시한 방법을 R로 분석할 수 있는 방법을 소개하고, 피마 인디언(Pima Indian) 데이터를 분석한다.