Abstract
The porous metal material is used for injection metal mold with a great deal of gas production because it makes plenty of gas exhausted through pores formed in the metal mold. A canning HIP method was conventionally used for manufacturing of porous metals, but because of difficulty of process control and high cost of production its application was limited. In this experiment, porous metal mold material was produced by an enhanced vacuum sintering method with simply controlled and economical process and porosities/mechanical properties with variation of sintering temperature and duration time during vacuum sintering were studied. As a result, quality goods were obtained at optimized conditions as follows: sintering temperature of $1230^{\circ}C$, duration time of 2 hr and showed superior properties in wear loss and thermal conductivity and the same properties in hardness, TRS (Transverse Rupture Strength), and thermal expansion coefficient in comparison with those under canning HIP.