• Title/Summary/Keyword: Vacuum sintering

Search Result 205, Processing Time 0.026 seconds

Improvments in Cost Reduction for Vacuum Sintering and Vacuum and Overpressure Sintering for Tungsten Carbides

  • Ermel, Dieter
    • Journal of Powder Materials
    • /
    • v.5 no.4
    • /
    • pp.293-298
    • /
    • 1998
  • In all larger hardmetal workshops furnaces for dewaxing, vacuum sintering or vacuum and overpressure sintering are today's standard. The furnace technology is well established. Equipment specifications such as operating overpressure, determine sintering cost, product quality, safety and reliability of the furnace and ultimately influence the competitiveness of the hard metal procucer in the global market. Essential furnace requirements are an efficient utilization of the furnace, an environmental friendly dewaxing system, high temperature uniformity, metallurgical treatment with process gases, as well as reduced cooling time by means of rapid cooling. Examples of reduced sintering costs are described achieved using a new design of vacuum sintering furnace with an improved rapid cooling device, cooling times are reduced by up to 45%. Additionally, a cost comparison of two different designs of vacuum overpressure sintering furnaces are included.

  • PDF

A Study on Vacuum Sintering of M2 HSS Powder (M2 분말의 진공소결에 관한연구)

  • Choe, Yeong-Taek
    • 한국기계연구소 소보
    • /
    • s.20
    • /
    • pp.89-104
    • /
    • 1990
  • This study was carried out to obtain the most optimum conition in vacuum sintering of M2 HSS powder, by analysis of sintering characteristics and fracture strength in several conditions. The conclusion deduced from this study are as follows; -Boron was more effective element than graphite; at this time, the optimum amount of addition was 0.05 wt% -The optimum condition of sintering temperature and time were 1190- $1200^{\circ}C$ and 1-1.25hr, respectively -Fracture strength of vacuum sintered and heat-treated specimen in the most optimum condition was 2-2.5KN/ $mm^2$

  • PDF

Effects of the Sintering Atmosphere and Ni Content on the Liquid-phase Sintering of $TiB_2$-Ni

  • Suk-Joong L. Kang;Baung, Jin-Chul;Park, Yeon-Gyu;Kang, Eul-Son;Baek, Yong-Kee;Jung, Sug-Woo
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.3
    • /
    • pp.207-211
    • /
    • 2001
  • The effects of the sintering atmosphere and Ni content on t도 densification of TiB$_2$-Ni have been investigated. TiB$_2$powder compacts containing 10, 20, and 30 wt% Ni were liquid-phase sintered at 1500-1$700^{\circ}C$ in vacuum or in flowing Ar. The densification was enhanced as Ni content increased. For a given Ni content, the densification was faster in compacts in compacts with larger grain size. These densification behaviors agree well with the prediction of the recently developed pore-filling theory. For samples containing high Ni contents, 80TiB$_2$-20Ni and 70TiB$_2$-30Ni, the densification was faster in vacuum than in Ar. In particular, 70TiB$_2$-30Ni was fully densified at 1$700^{\circ}C$ for 60min in vacuum. The suppressed densification in Ar was due to the entrapped Ar in the isolated pores. On the other hand, for 90TiB$_2$-10Ni, the Ar-sintering resulted in higher densification than did the vacuum-sintering. This result was attributed to the suppression of Ni volatilization by the Ar in the furnace and a retarded isolation of pores due to the limited amount of liquid in the sample. Therefore, vacuum sintering is recommended for the preparation of TiB$_2$-Ni with a high Ni content while Ar sintering is recommended for the preparation of TiB$_2$-Ni with a low Ni content.

  • PDF

Development of Porous Metal Mold Material using Vacuum Sintering Method (진공 소결 방식을 이용한 통기성 금형 소재 개발)

  • Kim, Dong-Won;Cho, Kyu-Il;Kim, Hyun-Keun;Kang, Ja-Youn;Rhee, Won-Hyuk;Hwang, Keum-Cheol
    • Journal of Surface Science and Engineering
    • /
    • v.41 no.5
    • /
    • pp.245-253
    • /
    • 2008
  • The porous metal material is used for injection metal mold with a great deal of gas production because it makes plenty of gas exhausted through pores formed in the metal mold. A canning HIP method was conventionally used for manufacturing of porous metals, but because of difficulty of process control and high cost of production its application was limited. In this experiment, porous metal mold material was produced by an enhanced vacuum sintering method with simply controlled and economical process and porosities/mechanical properties with variation of sintering temperature and duration time during vacuum sintering were studied. As a result, quality goods were obtained at optimized conditions as follows: sintering temperature of $1230^{\circ}C$, duration time of 2 hr and showed superior properties in wear loss and thermal conductivity and the same properties in hardness, TRS (Transverse Rupture Strength), and thermal expansion coefficient in comparison with those under canning HIP.

Consolidation of Binderless and Low-Binder WC hardmetal by Vacuum Sintering (진공 소결공정에 의한 고밀도 바인더리스 및 극저바인더 초경합금의 제조)

  • Min, Byoung-June;Park, Young-Ho;Lee, Gil-Geun;Ha, Gook-Hyeon
    • Journal of Powder Materials
    • /
    • v.14 no.5
    • /
    • pp.315-319
    • /
    • 2007
  • Pure WC or WC with low Co concentration less than 0.5 wt.% is studied to fabricate high density WC/Co cemented carbide using vacuum sintering and post HIP process. Considering the high melting point of WC, it is difficult to consolidate it without the use of Co as binder. In this study, the effect of lower Co addition on the microstructure and mechanical properties evolution of WC/CO was investigated. By HIP process after vacuum sintering, hardness and density was sharply increased. The hardness values was $2,800kgf/mm^2$ using binderless WC.

Powder Sintering for Fabrication of Porous Ti Implants (다공성 티타늄 임플란트 제조를 위한 분말 소결)

  • Kim, Yung-Hoon;Lee, Sun-Kyoung
    • Journal of Technologic Dentistry
    • /
    • v.32 no.4
    • /
    • pp.337-340
    • /
    • 2010
  • Purpose: This study was performed to compare sintering conditions for fabrication of porous Ti implant. Methods: The porous Ti implant samples were fabricated by sintering of spherical Ti powders in vacuum and atmosphere conditions. Surface morphology, composition and phase were analyzed by FE-SEM, EDX and XRD. Results: Sintered Ti implant in the vacuum consisted of particles connected in three dimensions by clear necking without excessive oxide layers. However, sintered Ti implant in atmosphere was formed excessive oxide layers with non-stoichiometric compounds. Conclusion: The porous Ti implant can be sintered in vacuum condition preferably.

Change Of the Properties and the $Cr_3C_2$ Phase by Sintering Atmospere on $Ti(C, N)-Cr_3C_2$ Ceramics ($Ti(C, N)-Cr_3C_2$, 소결체의 오결분위기에 따른 물성과 $Cr_3C_2$ 상변화)

  • 김무경;이재의
    • Korean Journal of Crystallography
    • /
    • v.3 no.1
    • /
    • pp.44-52
    • /
    • 1992
  • The effect of sintering atmosphere on the final properties and phase change of Ti (C, N) Cr3c2 ceramics was investigated. In the case of sintering in vacuum and N2 atmosphere, densely packed sintered body was obtained. In Ar atmosphere, however, densification was much decreased compared to sintering in vacuum and Na. XRD analysis showed that in vacuum atmosphere Cr3c2 phase was changed to Cr7c3 Phase whereas in N2 and Ar atmosphere phase change was not occurred. That is, for vacuum sintering, the formation of defects in Ti(C, N) structure occurred through de-nitridation process, and it promotes the diffusion of C in Cr3c2 and raises the densification effects. But in the case of N2 atmosphere, densification phenomenon was considered to be due to sintering mechanism that enabled formation of free carbon and removal of oxygen by free carbon and existence of carbon in the grain boundary.

  • PDF

Photo-sintering of Silaver Nanoparticles using UV-LED

  • Lee, Jaehyeong;Kim, Minha;Kim, Donguk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.88.1-88.1
    • /
    • 2015
  • In recent printed electronics technology, Photo-Sintering, a technique for sintering materials using a light source, has attracted attention as an alternative to time-consuming high-temperature thermal processes. The key principle of this technique is the selective heating of a strongly absorbent thin film, while preventing the heating of the transparent substrate by the light source. Many recent studies have used a flash lamp as the light source, and investigated the material-dependent effect of the width or intensity of the pulsed light. However, the flash lamp for sintering is not suitable for industry yet, because of needing too high power to sinter for a large scale. In energy-saving and large-scale sintering, LED technologies would be very useful in the near future. In this work, we investigated a sintering process for silver nanoparticles using UV-LED array. Silver nanoparticles in ink were inkjet-printed on a $1{\times}1cm$ area of a PET film and photo-sintered by 365 nm UV-LED module. A sheet resistance value as low as $72.6m{\Omega}/sq$ (2.3 - 4.5 times that of bulk silver) was obtained from the UV-LED sintering at 300 mW/cm2 for 50 min.

  • PDF

Rapid Tooling of Porous Ceramic Mold Using Slip Casting (슬립 캐스팅을 이용한 통기성 세라믹형의 쾌속 제작)

  • Chung, Sung-Il;Jeong, Du-Su;Im, Yong-Gwan;Jeong, Hae-Do;Cho, Kyu-Kap
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.5 s.98
    • /
    • pp.98-103
    • /
    • 1999
  • The application field of porous mold is more and more expended. A mixture of alumina and cast iron is used for making porous mold using slip and vacuum casting method in this study. Slip casting is a process that slurry is poured into silicon rubber mold, dried in vacuum oven, debinded and sintered in furnace, In this procedure, slurry is composed of powder, binder, dispersion agent, and water. Vacuum casting is a technique for removing air bubbles existed in the slurry under vacuum condition. Since ceramics has a tendency of over-shrinkage after sintering, cast iron is used to compensate dimensional change. The results shows that sintering temperature has a great effect on characteristics of alumina-cast iron composite sintered parts. Finally ceramic-metal composite sintered mold can be used for aluminum alloy casting of shoe mold using this process.

  • PDF