DOI QR코드

DOI QR Code

Effect of Silkworm (Bombyx mori) Excrement Powder on the Alcoholic Hepatotoxicit in Rats

알코올성 간독성에 미치는 누에배설물의 영향

  • Kim, Yong-Soon (Department of Agricultural Biology, National Institute of Agricultural Science And Technology, RDA) ;
  • Kim, Kee-Young (Department of Agricultural Biology, National Institute of Agricultural Science And Technology, RDA) ;
  • Kang, Pil-Don (Department of Agricultural Biology, National Institute of Agricultural Science And Technology, RDA) ;
  • Cha, Jae-Young (Technical Research Institute, Daesun Distilling Co., Ltd.) ;
  • Heo, Jin-Sun (Department of Biotechnology, Dong-A University) ;
  • Park, Bo-Kyung (Department of Biotechnology, Dong-A University) ;
  • Cho, Young-Su (Department of Biotechnology, Dong-A University)
  • 김용순 (농촌진흥청 농업과학기술원 농업생물부) ;
  • 김기영 (농촌진흥청 농업과학기술원 농업생물부) ;
  • 강필돈 (농촌진흥청 농업과학기술원 농업생물부) ;
  • 차재영 (대선주조(주) 기술연구소) ;
  • 허진선 (동아대학교 생명공학과) ;
  • 박보경 (동아대학교 생명공학과) ;
  • 조영수 (동아대학교 생명공학과)
  • Published : 2008.10.30

Abstract

The purpose of present study was to investigate the protective effect of silkworm excrement powder (SEP) on alcohol-induced hepatotoxicity in rats. Semisynthetic diet supplemented with SEP (3%, w/w) given to alcohol-feeding rats for 30 days, then blood and tissues were collected, processed and used for alcohol concentration mensuration, various biochemical estimations and histopathological examination. Chronic alcohol administration resulted in significantly increase in the activities of the clinically important liver marker enzymes, alanine aminotransferase (ALT), aspartate aminotransferase (AST), $\gamma$-glutamyl transpeptidase ($\gamma$-GTP) and lactate dehydrogenase (LDH). Also, a highly significant increase in the blood alcohol level by alcohol treatment was observed. But alcohol-induced elevation of ALT and LDH levels markedly prevented and the level of blood alcohol decreased in SEP treated rats as compared to alcohol-administered control rats. SEP supplementation showed highly decreased the concentrations of total lipid, triglyceride and cholesterol in serum, as compared with alcohol treated control rats. Alcohol treatment induced the marked accumulation of large lipid droplets, hepatocytes necrosis and inflammation in the liver, but SEP administration attenuated to alcohol-induced accumulation of lipid droplets and hepatocyte necrosis. The results indicated that SEP may exert a protective effect against alcoholic hepatotoxicity through decreasing the activity of hepatic marker enzymes.

알코올 급여 흰쥐에서 알코올성 간독성에 대한 누에배설물(silkworm excrement powder)의 영향을 검토하기 위하여 반합성 식이에 누에배설물을 3% (w/w) 수준으로 첨가하여 30일간 급여한 후 혈중 알코올 및 지질 농도, 간 기능 지표 효소 활성 및 간 조직 검사를 실시하였다. 임상생화학적으로 중요한 간 기능 지표 효소인 alanine aminotransferase (ALT), aspartate aminotransferase (AST), $\gamma$-glutamyl transpeptidase ($\gamma$-GTP) 및 lactate dehydrogenase (LDH) 활성이 알코올 대조군에서 증가하였다. 또한 혈중 알코올 농도도 알코올 섭취에 의해 증가하였다. 그러나 누에배설물 투여에 의해 혈중 ALT 및 LDH 활성은 현저하게 감소하였다. 혈중 중성지질, 콜레스테롤 농도는 알코올 대조군에 비해 누에배설물 투여에 의해 현저히 감소하였다. 또한 간 조직 검사에서 알코올 대조군에서 많은 지방적이 나타나 지방간이 확인되었으나 누에배설물 투여에 의해서는 지방적의 크기와 수가 많이 줄어드는 결과를 얻었다. 이상의 결과에서 누에배설물에 의한 알코올-유발 간독성의 개선효과는 간 조직의 임상생화학적 지표 효소의 활성 감소에 기인하는 것으로 나타났다.

Keywords

References

  1. Andersen, T. and C. Gluud. 1984. Liver morphology in morbid obesity: a literature study. Int. J. Obes. 8, 97-106.
  2. Arimoto-Kobayashi, S., N. Inada, H. Nakano, H. Rai and H. Hayatsu. 1998. Iron-chlorophyllin-mediated conversion of 3-hydroxyamino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P -2(NHOH) into its nitroso derivative. Mutat. Res. 400, 259-269. https://doi.org/10.1016/S0027-5107(98)00033-5
  3. Cha, J. Y., Y. Mameda, K. Oogami, K. Yamamoto and T. Yanagita. 1998. Association between hepatic triacylglycerol accumulation induced by administering orotic acid and enhanced phosphatidate phosphohydrolase activity in rats. Biosci. Biotechnol. Biochem. 62, 508-513. https://doi.org/10.1271/bbb.62.508
  4. Cha, J. Y., B. S. Jun and Y. S. Cho. 2004. Prevention of orotic acid-induced fatty liver in rats by capsaicin. Food Sci. Biotechnol. 13, 597-602.
  5. Cherng, J. Y. and M. S. Shim. 2006. Improving glycogenesis in streptozotocin (STZ) diabetic mice after administration of green algae Chlorella. Life Sci. 78, 1181-1186. https://doi.org/10.1016/j.lfs.2005.06.050
  6. Duncan, D. B. 1957. Multiple range test for correlated and heteroscedastic means. Biometrics 13, 164-176. https://doi.org/10.2307/2527799
  7. Gotoh, Y., S. Niimi, T. Hayakawa and T. Miyashita. 2004. Preparation of lactose-silk fibroin conjugates and their application as a scaffold for hepatocyte attachment. Biomaterials 25, 1131-1140. https://doi.org/10.1016/S0142-9612(03)00633-1
  8. Hwang, Y. K., H. J. Choi, M. Nam, J. D. Yoo and Y. H. Kim. 2006. Effects of Chlorella on metallothionein synthesis and binding capacity of cadmium poisoned rat liver and kidney. J. Exp. Biomed. Sci. 12, 23-27.
  9. Hu, L. Q. and D. Y. Xu. 1989. HPLC separation and characterization of chlorin derivatives with intact ring V from acid degradation products of silkworm excrement crude chlorophyll mixture. Biomed. Chromatogr. 3, 72-74. https://doi.org/10.1002/bmc.1130030207
  10. Inouye, K., M. Kurokawa, S. Nishikawa and M. Tsukada. 1998. Use of Bombyx mori fibroin as a substratum for cultivation of animal cells. J. Biochem. Biophys. Methods 37, 159-164. https://doi.org/10.1016/S0165-022X(98)00024-4
  11. Izu, H,, M. Shobayashi, Y. Manabe, K. Goto and H. Iefuji. 2006. Sake yeast suppresses acute alcohol-induced liver injury in mice. Biosci. Biotechnol. Biochem. 70, 2488-2493. https://doi.org/10.1271/bbb.60216
  12. Kang, G. D., K. H. Lee, S. G. Do, C. S. Kim, J. G. Suh, Y. S. Oh and J. H. Nham. 2001. Effect of silk fibroin on the protection of alcoholic hepatotoxicity in the liver of alcohol preference mouse. Int. J. Indust. Entomol. 2, 15-18.
  13. Kang, P. D., J. W. Kim, B. H. Sohn, K. Y. Kim, I. Y. Jung, M. J. Kim and K. S. Ryu. Accumulating pattern of $\alpha$- glycosidase inhibitor in various silkworm varities. Korean J. Seric. Sci. 48, 25-27.
  14. Kim, Y. H. 1998. Characteristics of greenish pigments from silkworm excrement by ethanol extraction. Korean J. Food Nutr. 44, 375-380.
  15. Koivula, T. and M. Koivusalo. 1975. Different form of rat liver aldehyde dehydrogenase and their subcellular distribution. Biochim. Biophys. Acta. 397, 9-23. https://doi.org/10.1016/0005-2744(75)90174-6
  16. Liever, C. S. 2001. Alcoholic liver injury: Pathogenesis and therapy in 2001. Pathologie et Biologie 49, 738-752. https://doi.org/10.1016/S0369-8114(01)00239-5
  17. Lieber, C. S. 2004. Alcoholic fatty liver: its pathogenesis and mechanism of progression to inflammation and fibrosis. Alcohol 34, 9-19. https://doi.org/10.1016/j.alcohol.2004.07.008
  18. Maher, J. J. 1997. Exploring alcohol's effects on liver function. Alcohol Health Res. World 21, 5-12.
  19. Morita, K. T. Matsueda, T. Lida and T. Hasegawa. 1999. Chlorella accelerates dioxin excretion in rats. J. Nutr. 129, 1731-1736. https://doi.org/10.1093/jn/129.9.1731
  20. Nagy, L. E. 2004. Molecular aspects of alcohol metabolism: transcription factors involved in early ethanol-induced liver injury. Annu. Rev. Nutr. 24, 55-78. https://doi.org/10.1146/annurev.nutr.24.012003.132258
  21. Ohtake, Y. and Y. Okumura. 1992. Establishing a high glutathione producing yeast species. Biosci. Ind. 50, 29-34.
  22. Park, K. J., H. Y. Kim, B. J. Chang and H. H. Lee. 2004. Ameliorative effects of soy 11S protein on liver damage and hyperlipidemia in alcohol-fed rats. Biol. Pharm. Bull. 27, 1636-1641. https://doi.org/10.1248/bpb.27.1636
  23. Park, K. J., M. J. Lee, H. Kang, K. S. Kim, S. H. Lee and I. Cho. 2002. Saeng-Maek-San, a medicinal herb complex, protects liver cell damage induced by alcohol. Biol. Pharm. Bull. 25, 1451-1455. https://doi.org/10.1248/bpb.25.1451
  24. Seo, H. J., K. S. Jeong, M. K. Lee, Y. B. Park, U. J. Jung, H. J. Kim and M. S. Choi. 2003. Role of naringin supplement in regulation of lipid and ethanol metabolism in rats. Life Sci. 73, 933-946. https://doi.org/10.1016/S0024-3205(03)00358-8
  25. Shibata, S., K. Oda, N. Onodera-Masuoka, S. Matsubara, H. Kikuchi-Hayakawa, F. Ishikawa, A. Iwabuchi and H. Sansawa. 2001. Hypocholesterolemic effect of indigestible fraction of Chlorella vulgaris in cholesterol-fed rats. J. Nutr. Sci. Vitaminol. 47, 373-377. https://doi.org/10.3177/jnsv.47.373
  26. Shon, M. Y., J. Y. Cha, C. H. Lee, S. H. Park and Y. S. Cho. 2007. Protective effect of administrated glutathioneenriched Saccharomyces cerevisiae FF-8 against carbon tetrachloride ($CCl_4$)-induced hepatotoxicity and oxidative stress in rats. Food Sci. Biotechnol. 16, 967-974.
  27. Shim, J. Y., H. S. Shin, J. G. Han, H. S. Park, B. L. Lim, K. W. Chung and A. S. Om. 2008. Protective effects of Chlorella vulgaris on liver toxicity in cadmium-administered rats. J. Med. Food 11, 479-485. https://doi.org/10.1089/jmf.2007.0075
  28. Wang, W., S. Shen, Q. Chen, B. Tang, G. He, H. Ruan and U. N. Das. 2008. Hydrolyzates of silkworm pupae (Bombyx mori) protein is a new source of angiotensin-1 converting enzyme (ACE) inhibitory peptides (ACEIP). Current Pharm. Biotechnol. 9, 307-314. https://doi.org/10.2174/138920108785161578
  29. Yin, M., K. Ikejima, G. E. Arteel, V. Seabra, B. U. Bradford, H. Kono, I. Rusyn and R. G. Thurman. 1998. Glycine accelerates recovery from alcohol-induced liver injury. J. Pharmacol. Exp. Ther. 286, 1014-1019.
  30. Yoon, J. W., S. G. Lee and K. B. Lee. 2005. Effects of silkworm extract powder on plasma lipids and glucose in rat. Korean J. Food Nutr. 18, 140-145.

Cited by

  1. Antioxidant activity of silkworm powder treated with protease vol.33, pp.2, 2016, https://doi.org/10.7852/ijie.2016.33.2.78
  2. Modification of the characteristics of silkworm powder by treatment with alkaline protease vol.31, pp.1, 2015, https://doi.org/10.7852/ijie.2015.31.1.30
  3. Improvement Effect of Fermented Silkworm (Bombyx mori L.) Powder against Orotic Acid-induced Fatty Liver in Rats vol.23, pp.6, 2013, https://doi.org/10.5352/JLS.2013.23.6.789
  4. Protective Effect of Boiled and Freeze-dried Mature Silkworm Larval Powder Against Diethylnitrosamine-induced Hepatotoxicity in Mice vol.21, pp.3, 2016, https://doi.org/10.15430/JCP.2016.21.3.173
  5. Biological Activity and Chemical Characteristics of Fermented Silkworm Powder by Mold vol.20, pp.2, 2010, https://doi.org/10.5352/JLS.2010.20.2.237
  6. RETRACTED: Hepatoprotective effects on alcoholic liver disease of fermented silkworms withBacillussubtilisandAspergillus kawachii vol.63, pp.5, 2012, https://doi.org/10.3109/09637486.2011.607801
  7. Present and Perspective on Insect Biotechnology vol.30, pp.6, 2015, https://doi.org/10.7841/ksbbj.2015.30.6.257