DOI QR코드

DOI QR Code

A Measurement for the Degree of Semantic Relationship Between Two Instances Based on Context

컨텍스트에 기반한 두 인스턴스 사이의 의미 관계 정도 측정

  • Published : 2008.10.25

Abstract

Entities in reality have direct relationships between each other. They also have new and indirect relationships through such direct relationships. An ontology gives explicit meaning of such relationships. Thus, we can discover new relationships between entities based on an ontology. Such new relationships are applied in indentifying new communities or constructing social networks. Measuring for the degree of relationships is an important problem in such domains. This paper proposes a measurement for the degree of relationships between entities based on an ontology. Most of researches are based on connected paths between entities. However, there are meaningful relationships between two entities through the schema in an ontology even through there are no connected paths between the entities. The proposed method measures for the degree of relationships between two entities not based on connected paths, but also relationships through the schema. The experiment result shows that the relationships through the schema are meaningful to measure the degree of relationships between entities.

실세계의 객체들은 서로 직접적인 관계를 맺고 있고, 이러한 직접적인 관계를 통해 연결되는 새로운 간접적인 관계를 가진다. 온톨로지는 객체들 사이의 관계에 대한 의미를 명시적으로 표현한다. 따라서, 온톨로지를 이용함으로써 객체간의 새로운 관계를 발견할 수 있다. 새롭게 발견된 객체들 간의 관계는 커뮤니티를 찾거나 소셜네트워크를 구축하는데 활용된다. 이러한 응용에서 두 객체간에 관계 정도를 측정하는 것은 중요한 문제이다. 본 논문은 온톨로지에 기반하여 객체들 간의 관계 정도를 측정하는 방법을 제안한다. 기존 연구에서는 주로 객체들 간의 연결되는 패스를 주요하게 다루어 왔지만 두 객체 사이에 연결된 패스는 없더라도, 온톨로지의 스키마를 통해 의미를 가지는 관계가 있다. 본 논문에서 제안한 방법은 객체들 간에 패스로 연결되는 관계는 물론 객체가 속하는 스키마를 통해 관계하는 정보들도 활용해서 두 객체간의 관계정도를 측정한다. 실험 결과 두 객체 사이에 스키마를 통한 관계에서 많은 의미 관계가 있음을 보였다.

Keywords

References

  1. Gruver, T., http://www-ksl.stanford.edu/kst/what-is-an-ontology.html
  2. Tim, B., James, H. and Ora, L., "The Semantic Web, Feature Article", In Scientific American, 5(1), 2001
  3. McGuinness, D., and Harmelen, F., "OWL Web Ontology Language Overview", W3C Recommendation, 2004
  4. Li, D., Tim, F., Anupam, J., "Analyzing Social Networks on the Semantic Web", IEEE Intelligent Systems, 8(6), 2004
  5. Zhdanova, A., Predoiu, L., Pellegrini, T., and Fensel, D., "A Social Networking Model of a Web Community", In Proc. of the 10th International Symposium on Social Communication, pp. 22-26, 2007
  6. Sheth, A., Aleman-Meza, B., and Arpinar, I., "Semantic Association Identification and Knowledge Discovery for National Security Applications", In Journal of database Management on Database Technology for Enhancing national Security, 16(1), pp. 33-53, 2005
  7. Anyanwu, K. and Sheth, A., "${\rho}$-Queries: Enabling Querying for Semantic Associations on the Semantic Web", In Proc. WWW2003, pp. 690-699, 2003
  8. Aleman-Meza, B., Halaschek-Wiener, C. Arpinar, I. and and Sheth, A., "Context-Aware Semantic Association Ranking", In First International Workshop on Semantic Web and Databases, pp. 33-50, 2003
  9. Aleman-Meza, B., Halaschek-Wiener, C., Arpinar, I., Ramakrishman, C., and Sheth, A., "Ranking Complex Relationships on the Semantic Web", In IEEE Internet Computing, 9(4), pp. 37-44, 2005 https://doi.org/10.1109/MIC.2005.63
  10. Alexaki S., Christophides V., Karvounarakis G., Plexousakis D., and Tolle K., "The ICS-FORTH RDFSuite: Managing Voluminous RDF Description Bases", In SemWeb, pp. 1-13, 2001
  11. Alkhateeb, F., Baget JF., Euzenat, J. "Complex path queries for RDF", Poster paper in International Semantic Web Conference 2005, pp. 52-53, 2005
  12. Barton, S, "Designing Indexing Structure for Discovering Relationships in RDF Graphs", In Proc. of Databases, Texts, Specifications, and Objects, pp. 7-17, 2004
  13. Anyanwu, K., Maduko, A., and Sheth, A., "SPARQ2L: Towards Support for Subgraph Extraction Queries in RDF Databases", In Proc. www2007, pp. 797-806, 2007
  14. Kochut, K., and Janik, M., "SPARQLeR: Extended Sparql for Semantic Association Discovery", In LNCS The Semantic Web: Research and Application, pp. 145-159, 2007 https://doi.org/10.1007/978-3-540-72667-8_12
  15. Tian, X., Li, H., and Du, X., "Measuring Semantic Association in Domain Ontology", In Proc. of International Conference on Semantics, Knowledge and Grid, pp. 515-518, 2007
  16. Tian, X., Li, Du, X., and Li, H., "Computing Degree of Association Based on Different Semantic Relationships", In Proc. 18th International Workshop on Database and Expert Systems Applications, pp. 372-376, 2007
  17. Fernandez, Y., Arias, J., Nores, M., Solla, Q., and Cabrer, M., "AVATAR: An Improved Solution for Personalized TV based on Semantic Inference," In Consumer Electronics, IEEE Transactions, 52(1), pp. 223-231, 2006