Abstract
In this paper, we propose a new method for tracking objects continously and successively based on fusion of region information, color information and motion template when multiple objects are occluded and splitted. For each frame, color template is updated and compared with the present object. The predicted region, dynamic template and color histogram are used to classify the objects. The vertical histogram of the silhouettes is analyzed to determine whether or not the foreground region contains multiple objects. The proposed method can recognize more correctly the objects to be tracked.
본 논문은 비정형 객체를 추적함에 있어서 다른 객체와 겹쳐진 후 계속 추적할 수 있는 방법으로 지역 정보와 객체의 모션 템플리트 그리고 색 정보를 계층적으로 사용하는 방안을 제안한다. 기본적으로 색 정보 기반의 CAMshift 알고리즘을 바탕으로 각 프레임마다 color template를 업데이트하여 현재의 객체와 template를 비교하고, 업데이트 된 color template를 바탕으로 색 분포를 사용하여 CAMshift 결과를 비교하여 추적하는 물체를 보다 정확하게 판별할 수 있도록 한다. 지역정보, 컬러 정보, 모션 템플리트 정보를 융합한 객체추적은 기존의 객체추적 방법의 장점을 모두 유지하면서 추적하는 객체를 보다 정확하게 인식할 수 있다. 이러한 성능 향상은 기존의 객체추적 시스템에 추가하기도 용이 할 백만 아니라 감시시스템 및 객체 추적 시스템의 연구에서 정확성의 향상에 기여할 것으로 기대된다.