DOI QR코드

DOI QR Code

The Formation of ConTiOn+2 Compounds in CoOx/TiO2 Catalysts and Their Activity for Low-Temperature CO Oxidation

CoOx/TiO2 촉매상에 ConTiOn+2 화합물의 생성과 저온 CO 산화반응에 대한 촉매활성

  • Kim, Moon-Hyeon (Department of Environmental Engineering, Daegu University) ;
  • Ham, Sung-Won (Department of Display and Chemical Engineering, Kyungil University)
  • 김문현 (대구대학교 환경공학과) ;
  • 함성원 (경일대학교 디스플레이화학공학과)
  • Published : 2008.08.30

Abstract

The formation of $Co_nTiO_{n+2}$ compounds, i.e., $CoTiO_3$ and $CO_2TiO_4$, in a 5wt% $CoO_x/TiO_2$ catalyst after calcination at different temperatures has been characterized via scanning electron microscopy (SEM), Raman and X-ray photoelectron spectroscopy (XPS) measurements to verify our earlier model associated with $CO_3O_4$ nanoparticles present in the catalyst, and laboratory-synthesized $Co_nTiO_{n+2}$ chemicals have been employed to directly measure their activity profiles for CO oxidation at $100^{\circ}C$. SEM measurements with the synthetic $CoTiO_3$ and $CO_2TiO_4$ gave the respective tetragonal and rhombohedral morphology structures, in good agreement with the earlier XRD results. Weak Raman peaks at 239, 267 and 336 $cm^{-1}$ appeared on 5wt% $CoO_x/TiO_2$ after calcination at $570^{\circ}C$ but not on the catalyst calcined at $450^{\circ}C$, and these peaks were observed for the $Co_nTiO_{n+2}$ compounds, particularly $CoTiO_3$. All samples of the two cobalt titanate possessed O ls XPS spectra comprised of strong peaks at $530.0{\pm}0.1$ eV with a shoulder at a 532.2-eV binding energy. The O ls structure at binding energies near 530.0 eV was shown for a sample of 5 wt% $CoO_x/TiO_2$, irrespective to calcination temperature. The noticeable difference between the catalyst calcined at 450 and $570^{\circ}C$ is the 532.2 eV shoulder which was indicative of the formation of the $Co_nTiO_{n+2}$ compounds in the catalyst. No long-life activity maintenance of the synthetic $Co_nTiO_{n+2}$ compounds for CO oxidation at $100^{\circ}C$ was a good vehicle to strongly sup port the reason why the supported $CoO_x$ catalyst after calcination at $570^{\circ}C$ had been practically inactive for the oxidation reaction in our previous study; consequently, the earlier proposed model for the $CO_3O_4$ nanoparticles existing with the catalyst following calcination at different temperatures is very consistent with the characterization results and activity measurements with the cobalt titanates.

Keywords

References

  1. Epping K., Aceves S., Bechtold R., Dec J., 2002, The potential of HCCI combustion for high efficiency and low emission, SAE paper 2002-01-1923.
  2. Kim M. H., Nam I. S., 2005, New opportunity for HC-SCR technology to control $NO_x$ emissions from advanced internal combustion engines, in 'A Specialist Periodical Report', Catalysis (Vol. 18) - A Review of Recent Literature, Spivey J. J., Senior Reporter, The Royal Society of Chemistry, Cambridge, 116pp
  3. Gulari E., Guldur C., Srivannavit S., Osuwan S., 1999, Co oxidation by silver cobalt composite oxide, Appl. Catal. A, 182, 147-163 https://doi.org/10.1016/S0926-860X(99)00002-2
  4. Jansson J., Palmqvist A. E. C., Fridell E., Skoglundh M., Osterlund L., Thormahlen P., Langer V., 2002, On the catalytic activity of $Co_3O_4$ in low-temperature CO oxidation, J. Catal., 211, 387-397 https://doi.org/10.1016/S0021-9517(02)93738-3
  5. Gong H., Hu J. Q., Wang J. H., Ong C. H., Zhu F. R., 2006, Nano-crystalline Cu-doped ZnO thin film gas sensor for CO, Sens. Actuators B, 115, 247-251 https://doi.org/10.1016/j.snb.2005.09.008
  6. Taylor S. H., Hutchings G. J., Mirzaei A. A., 1999, Copper zinc oxide catalysts for ambient temperature carbon monoxide oxidation, Chem. Commun., 1373-1374
  7. Whittle D. M., Mirzaei A. A., Hargreaves J. S. J., Joyner R. W., Kiely C. J., Taylor S. H., Hutchings G. J., 2002, Co-precipitated copper zinc oxide catalysts for ambient temperature carbon monoxide oxidation: Effect of precipitate ageing on catalyst activity, Phys. Chem. Chem. Phys., 4, 5915-5920 https://doi.org/10.1039/b207691h
  8. Cameron D., Holliday R., Thompson D., 2003, Gold's future role in fuel cell systems, J. Power Sources, 118, 298-303 https://doi.org/10.1016/S0378-7753(03)00074-0
  9. Kuo C. N., Chen H. F., Lin J. N., Wan B. Z., 2007, Nano-gold supported on TiO2 coated glass-fiber for removing toxic CO gas from air, Catal. Today, 122, 270-276 https://doi.org/10.1016/j.cattod.2007.02.019
  10. Kim M. H., 2007, Current and future US Tier 2 vehicles program and catalytic emission control technologies to meet the future Tier 2 standards, Korean J. Chem. Eng., 24, 209-222 https://doi.org/10.1007/s11814-007-5032-1
  11. Schumacher B., Denkwitz Y., Plzak V., Kinne M., Behm R. J., 2004, Kinetics, mechanism, and the influence of H2 on the CO oxidation reaction on a $Au/TiO_2$ catalyst, J. Catal., 224, 449-462 https://doi.org/10.1016/j.jcat.2004.02.036
  12. Ghenciu A. F., 2002, Review of fuel processing catalysts for hydrogen production in PEM fuel cell systems, Cur. Opin. Solid State Mater. Sci., 6, 389-399 https://doi.org/10.1016/S1359-0286(02)00108-0
  13. Minemura Y., Kuriyama M., Ito S. I., Tomishige K., Kunimori K., 2006, Additive effect of alkali metal ions on preferential CO oxidation over $Pt/Al_2O_3$, Catal. Commun., 7, 623-626 https://doi.org/10.1016/j.catcom.2006.01.028
  14. Manasilp A., Gulari E., 2002, Selective CO oxidation over Pt/alumina catalysts for fuel cell applications, Appl. Catal. B, 37, 17-25 https://doi.org/10.1016/S0926-3373(01)00319-8
  15. Avgouropoulos G., Ioannides T., Papadopoulou Ch., Batista J., Hocevar S., Matralis H. K., 2002, A comparative study of $Pt/{\gamma}-Al_2O_3, Au/{\alpha}-Fe_2O_3$ and CuO-CeO_2$ catalysts for the selective oxidation of carbon monoxide in excess hydrogen, Catal. Today, 75, 157-167 https://doi.org/10.1016/S0920-5861(02)00058-5
  16. Haruta M., Yamada N., Kobayashi T., Iijima S., 1989, Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide, J. Catal., 115, 301-309 https://doi.org/10.1016/0021-9517(89)90034-1
  17. Grisel R. J. H., Nieuwenhuys B. E., 2001, Selective oxidation of CO over supported Au catalysts, J. Catal., 199, 48-59 https://doi.org/10.1006/jcat.2000.3121
  18. Moreau F., Bond G. C., Taylor A. O., 2004, The influence of metal loading and pH during preparation on the CO oxidation activity of $Au/TiO_2$ catalysts, Chem. Commun., 1642-1643
  19. Marban G., Fuertes A. B., 2005, Highly active and selective $CuOx/CeO_2$ catalyst prepared by a single- step citrate method for preferential oxidation of carbon monoxide, Appl. Catal. B, 57, 43-53 https://doi.org/10.1016/j.apcatb.2004.10.011
  20. Martinez-Arias A., Hungria A. B., Munuera G., Gamarra D., 2006, Preferential oxidation of CO in rich $H_2$ over CuO/CeO_2$: Details of selectivity and deactivation under the reactant stream, Appl. Catal. B, 65, 207-216 https://doi.org/10.1016/j.apcatb.2006.02.003
  21. Pillai U. R., Deevi S., 2006, Room temperature oxidation of carbon monoxide over copper oxide catalyst, Appl. Catal. B, 64, 146-151 https://doi.org/10.1016/j.apcatb.2005.11.005
  22. Yu Yao Y. F., 1974, The oxidation of hydrocarbons and CO over metal oxides: III. $Co_3O_4$, J. Catal., 33, 108-122 https://doi.org/10.1016/0021-9517(74)90250-4
  23. Grillo F., Natile M. M., Glisenti A., 2004, Low temperature oxidation of carbon monoxide: The influence of water and oxygen on the reactivity of a $Co_3O_4$ powder surface, Appl. Catal. B, 48, 267-274 https://doi.org/10.1016/j.apcatb.2003.11.003
  24. Thormahlen P., Skoglundh M., Fridell E., Andersson B., 1999, Low-temperature CO oxidation over platinum and cobalt oxide catalysts, J. Catal., 188, 300-310 https://doi.org/10.1006/jcat.1999.2665
  25. Cunningham D. A. H., Kobayashi T., Kamijo N., Haruta M., 1994, Influence of dry operating conditions: Observation of oscillations and low temperature CO oxidation over $Co_3O_4$ and $Au/Co_3O_4$ catalysts, Catal. Lett., 25, 257-264 https://doi.org/10.1007/BF00816305
  26. Yang W. H., Kim M. H., Ham S. W., 2007, Effect of calcination temperature on the low-temperature oxidation of CO over $CoO_x/TiO_2$ catalysts, Catal. Today, 123, 94-103 https://doi.org/10.1016/j.cattod.2007.01.048
  27. Ciambelli P., Lisi L., Russo G., Volta J. C., 1995, Physico-chemical study of selective catalytic reduction vanadia-titania catalysts prepared by the equilibrium adsorption method, Appl. Catal. B, 7, 1-18 https://doi.org/10.1016/0926-3373(95)00033-X
  28. Lin Y., Zhang X., 2008, Preparation of highly dispersed $CeO_2/TiO_2$ core-shell nanoparticles, Mat. Lett., 62, 3764-3766 https://doi.org/10.1016/j.matlet.2008.04.059
  29. Brik Y., Kacimi M., Ziyad M., Bozon-Verduraz F., 2001, Titania-supported cobalt and cobalt-phosphorus catalysts: Characterization and performances in ethane oxidative dehydrogenation, J. Catal., 202, 118-128 https://doi.org/10.1006/jcat.2001.3262
  30. Oukaci R., Singleton A. H., Goodwin J. G. Jr., 1999, Comparison of patented Co F-T catalysts using fixed-bed and slurry bubble column reactors, Appl. Catal. A, 186, 129-144 https://doi.org/10.1016/S0926-860X(99)00169-6