Characteristics Variation Analysis by Shape of Piezoelectric Ultrasonic Transducer with Non-Uniform Thickness

두께 불균일 압전 초음파 트랜스듀서의 형태에 따른 특성변화 해석

  • Published : 2008.08.31

Abstract

The electro-mechanical characteristics were theoretically analyzed for the wideband ultrasonic transducer made of non-uniform thickness piezoelectric vibrator. This paper proposes a combination of exponential functions which describes the thickness variation along the length of the vibrator to derive the input admittance and power transfer function of the transducer. The bandwidth and the power transfer function of the transducer were investigated while the lateral shape of the vibrator changes. The results showed there is an optimum shape for the wideband characteristics of the transducer, and the bandwidth has increased up to over 100% as the ratio of minimum value of thickness to maximum value decreases. However, the power transfer function had a downward trend as the ratio of thickness decreases. Also we confirmed that even though the value of transfer function increases as the length of the piezoelectric vibrator increases, the shape providing wideband characteristics is very limited. It means that precision processing is required to manufacturing a wideband ultrasonic transducer with high efficiency.

압전판의 길이나 폭에 따라 두께가 변화하는 압전 세라믹을 사용하여 광대역 특성을 구현하는 초음파 트랜스듀서에 대하여 압전진동자의 측면에서 본 형태에 따른 전기-음향적 특성해석을 이론적으로 수행하였다. 압전진동자의 길이방향에 따른 두께 변화를 지수함수의 조합으로 표현하고 이 함수를 이용하여 압전진동자의 전기단자에서 본 자유 어드미턴스 및 파워전달함수에 대한 식을 도출하였다. 대표적인 PZT압전 세라믹을 예로 들어 압전 진동자의 측면 형태변화에 따른 비 대역폭을 고찰해본 결과 넓은 대역폭를 얻기 위한 최적의 형태가 존재함을 알 수 있었으며, 압전진동자의 최대두께에 대한 최소두께 비가 자아짐에 따라 대역폭은 100%이상까지도 넓어질 수 있으나 파워전달함수는 반대로 감소하는 경향을 확인할 수 있었다. 또 압전진동자의 길이가 길어질수록 전달함수의 크기는 증가하나 광대역 특성을 갖는 압전진동자의 형태는 매우 한정적이 됨을 확인할 수 있었으며 이는 고효율의 광대역 초음파 트렌스듀서 제작에 있어서는 정밀한 가공이 요구됨을 확인할 수 있었다.

Keywords

References

  1. V. Ristic, Principles of Acoustic Devices, (John Wiley & Sons, New York, 1983)
  2. G. Kino, Acoustic waves: Devices, Imaging, and Analog Signal Processing, (Prentice-Hall, New Jersey, 1987)
  3. J. Rosenbaum, Bulk Acoustic Wave Theory and Devices, Artech House, Boston, 1988
  4. 吉元進, 塩川淳一, 橋本研也, 山口正恆, "浮き構造を 有する多層薄膜構造超音波トランスジュ一サ", 電子情報 通信学会技術研究報告. US超音波, 93(95), 35-40, 1993
  5. 中村僖良, 清水洋, "ZnO/SiO2/Siダイヤフラム構造のUHF 帯圧電共振子", 第11回EMシンポジウム, 55-63, 1982
  6. 山田, 顕, , 坂村純一中村僖良" 電定圧数傾斜持にをつ圧 電板を用いた超音波トランスデュ一サの等価回路解析", 電子情報通信学会超音波研究会資料, US 99-25, 23-28. 1999
  7. rasonic Transducers with an Inverted-Domain Layer for Radiation to Solid Media", Jpn. J. Appl. Phys., 44, 6B, 4482-4484, 2005 https://doi.org/10.1143/JJAP.44.4482
  8. Y. Tomikawa. A. Yamada. and M. Onoe, "Wide Band Ultrasonic Transducer Using Tapered Piezoelectric Ceramics for Non- Destructive Inspection," Jpn. J. Appl. Phys., 23, suppl. 23-1, 113-115, 1984
  9. P. G. Barthe and P. J. Benkeser, "A Staircase Model of Tapered-thickness Piezo-electric Ceramics," J. Acoust. Soc. Am., 89, 1434-1442, 1991 https://doi.org/10.1121/1.400544
  10. B. N. Alekseev, D. B. Dianov, and S.P. Karuzo, "Tapered- Bar Transducer," in Proceedings of the Eighth All-Union Acoustics Conference [in Russian], Moscow, 1973
  11. A. M. Hanafy, "Broadband Phased Array Transducer Design with Frequency-Controlled Two-Dimensional Capability," SPIE 3341, 64-82, 1998
  12. C. S. Desilets, J. D. Fraser and G. S. Kino, "The Design of Efficient Broad-band Piezoelectric Transducers," IEEE Trans. Sonics Ultrason., SU-25, 115-125, 1978
  13. C. H. Chou, J.E. Bowers, A. R. Selfridge, B. T. Khuri-Yakub and G. S. Kino, "The Design of Broadband and Efficient Acoustic Wave Transducers," IEEE Trans. Ultrason. Symp. Proc., 2, 984-988, 1980
  14. D. Kim, J. Han, J. Yang, M. Kim, K. Ha, "Characteristic Evaluation for a PZT Transducer with Cylindrical Rear Surface," Journal of the Acoustical Society of Korea, 26(1E), 14-20, 2007
  15. P.J. Benkeser, "A Pulse-Echo Ultrasound Tapered Phased Array Transducer," Proc. 13th NE Bioengineering Conf., 286- 288, 1987
  16. T. Ikeda, Fundamentals of piezoelectricity, (Oxford University Press, New York & Tokyo, 1990)