Optimal Design and Analysis of a Medical Imaging Ultrasonic Array Sensor

의료 영상진단용 초음파 어레이 센서의 최적설계 및 특성해석

  • Published : 2008.08.31

Abstract

The performance of an ultrasonic array sensor is determined by the properties of constituent materials and the effects of many structural parameters. In this study, with the finite element method, variation of the performances of an ultrasonic array sensor was analyzed in relation to its structural variables. Based on the analysis result, the structure of the ultrasonic array sensor was optimized to provide the highest sensitivity while satisfying such requirements as fractional bandwidth, center frequency and -20 dB pulse length. The optimization was carried out with the SQP-PD method for a target function composed of the ultrasonic array sensor performance. The optimized ultrasonic array sensor satisfied all the required specifications to be applicable to medical imaging diagnosis. The design technology in this paper can be utilized for other ultrasonic array sensors of a similar structure.

초음파 어레이 센서의 성능은 구성 불성과 많은 구소 변수들에 의해 결정된다. 본 연구에서는 유한 요소해석을 통하여 구조적인 변화에 따른 초음파 어레이 센서의 성능변화를 해석하였다. 해석 결과를 기초로 하여 초음파 어레이 센서가 주파수 대역폭, 중심 주파수 그리고 -20 dB pulse length와 같은 요구 사항을 모두 만족시키며 최대의 감도를 가지도록 구조를 최적화하였다. 최적화 방법으로는 초음파 어레이 센서의 성능을 목적 함수로 하는 SQP-PD 방법을 사용하였다. 최적화된 초음파 어레이 센서는 의료 영상 진단에 적용되기 위한 모든 요구 조건을 만족하였으며, 본 설계 기술은 유사한 형태의 다른 배열형 초음파 센서에 응용 가능하다

Keywords

References

  1. K. R. Erikson, F. J. Fry and J. P. Jones, "Ultrasound in medicine-a review," IEEE Trans. on Sonics and Ultrasonics 21, 144-170, 1974 https://doi.org/10.1109/T-SU.1974.29810
  2. S. C. Wooh and Y. Shi, "Optimum beam steering of linear phased arrays," Wave Motion 29, 245-265, 1999 https://doi.org/10.1016/S0165-2125(98)00039-0
  3. J. Ylitalo, "Synthetic aperture ultrasound imaging using convex array," IEEE Utras. Sym. Proc., 1337-1340, 1995
  4. S. W. Smith, O. T. von Ramm, M. E. Haran and R. L. Thurstone, "Angular response of piezoelectric elements in linear phased array ultrasound scanners," IEEE Trans. Ultrason. Ferroelectr. Freq. Contr. 26, 185-191, 1979
  5. N. Felix, D. Certon, E. Lacaze, M. Lethiecq and F. Patat, "Experimental investigation of cross-coupling and its influence on the elementary radiation pattern in 1D ultrasound arrays," IEEE ultras. Sym. Proc., 1053-1056, 1999
  6. J. Larson,"Non-ideal radiations in phased array transducers," IEEE Ultras. Symp. Proc., 673-684, 1984
  7. J. A. Jensen and N. B. Svendsen, "Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers." IEEE Trans. Ultrason., Ferroelec., Freq. Contr. 39, 262-267, 1992 https://doi.org/10.1109/58.139123
  8. D. J. Powell, G. L. Wojcik and B. K. Mukherjee, "Incremental 'Model-build-test'Validation Exercise for a 1-D Biomedical Ultrasonic Imaging Array," IEEE ultras. Sym. Proc., 1669-1674, 1997
  9. R. E. McKeighen, "Design Guidelines for Medical Ultrasonic Arrays," SPIE 3341, 2-18, 1998 https://doi.org/10.1117/12.307992
  10. R. O. Kuehl, Design of experiments: Statistical principles of research design and analysis, (Duxbury Press, Pacific Grove, 2000)
  11. R. J. Freund and W. J. Wilson, Regression analysis: Statistical modeling of a response variable, (Academic Press, San Diego, 1998)
  12. K. J. Kang and Y. R. Roh, "Optimization of structural variables of a flextensional transducer by the statistical multiple regression analysis method," J. Acoust. Soc. Am. 114(3), 1454 -1461, 2003 https://doi.org/10.1121/1.1600725
  13. 강국진, 노용래, "Class IV Flextensional 트랜스듀서의 주파수 특성 변화에 관한 연구," 한국음향학회지 18(7), 67-73, Nov. 1999
  14. A. D. Belegudu and T. R. Chandrupatla, Optimization concept and application in engineering, (Prentice Hall, New Jersey, Chap.5, 1999)
  15. D. A. Pierre, Optimization theory with applications, (Dover Publications, New York, 1986)
  16. R. E. Miller, Optimization: foundations and applications, (John Wiley & Sons, New York, 2000)