References
- S. B. Damelin and D. S. Lubinsky, Necessary and sufficient conditions for mean convergence of Lagrange interpolation for Erdos weights I, Can. J. Math. 48 (1996), no. 4, 710-736 https://doi.org/10.4153/CJM-1996-037-1
- Z. Ditzian and V. Totik, Moduli of Smoothness, Springer Series in Computational Mathematics, 9, Springer-Verlag, Berlin, 1987
- G. Freud, Orthogonal polynomials, Pergamon Press, Oxford, 1971
-
H. S. Jung,
$L_{\infty}$ convergence of interpolation and Associated Product integration for exponential weights, J. Approx. Theory 120 (2003), no. 2, 217-241 https://doi.org/10.1016/S0021-9045(02)00020-5 - H. S. Jung, On coefficients of Hermite-Fejer interpolations, Arch. Inequal. Appl. 1 (2003), no. 1, 91-109
-
A. L. Levin, D. S. Lubinsky, and T. Z. Mthembu, Christoffel functions and orthogonal polynomials for Erdos weights on (
$-{\infty},{\infty}$ ), Rend. Mat. Appl. 14 (1994), no. 7, 199-289 -
D. S. Lubinsky, The weighted
$L_{p}$ -norms of orthogonal polynomials for Erdos weights, Comput. Math. Appl. 33 (1997), 151-163 https://doi.org/10.1016/S0898-1221(96)00227-1 - E. B. Saff and V. Totik, Logarithmic Potentials with External Fields, Springer-Verlag, Heidelberg, 1997
Cited by
- On the dense divergence of the product quadrature formulas of interpolatory type vol.433, pp.2, 2016, https://doi.org/10.1016/j.jmaa.2015.08.056