DOI QR코드

DOI QR Code

HOLOMORPHIC FUNCTIONS ON THE MIXED NORM SPACES ON THE POLYDISC

  • Stevic, Stevo (Mathematical Institute of the Serbian Academy of Science)
  • 발행 : 2008.01.31

초록

We generalize several integral inequalities for analytic functions on the open unit polydisc $U^n={\{}z{\in}C^n||zj|<1,\;j=1,...,n{\}}$. It is shown that if a holomorphic function on $U^n$ belongs to the mixed norm space $A_{\vec{\omega}}^{p,q}(U^n)$, where ${\omega}_j(\cdot)$,j=1,...,n, are admissible weights, then all weighted derivations of order $|k|$ (with positive orders of derivations) belong to a related mixed norm space. The converse of the result is proved when, p, q ${\in}\;[1,\;{\infty})$ and when the order is equal to one. The equivalence of these conditions is given for all p, q ${\in}\;(0,\;{\infty})$ if ${\omega}_j(z_j)=(1-|z_j|^2)^{{\alpha}j},\;{\alpha}_j>-1$, j=1,...,n (the classical weights.) The main results here improve our results in Z. Anal. Anwendungen 23 (3) (2004), no. 3, 577-587 and Z. Anal. Anwendungen 23 (2004), no. 4, 775-782.

키워드

참고문헌

  1. G. Benke and D. C. Chang, A note on weighted Bergman spaces and the Cesaro operator, Nagoya Math. J. 159 (2000), 25-43 https://doi.org/10.1017/S0027763000007406
  2. J. S. Choa, Some properties of analytic functions on the unit ball with Hadamard gaps, Complex Variables 29 (1996), 277-285 https://doi.org/10.1080/17476939608814895
  3. B. R. Choe, H. Koo, and H. Yi, Derivatives of harmonic Bergman and Bloch functions on the unit ball, J. Math. Anal. Appl. 260 (2001), 100-123 https://doi.org/10.1006/jmaa.2000.7438
  4. P. Duren, Theory of $H^p$ spaces, Academic Press, New York, 1970
  5. T. M. Flett, The dual of an inequality of Hardy and Littlewood and some related inequalities, J. Math. Anal. Appl. 38 (1972), 746-765 https://doi.org/10.1016/0022-247X(72)90081-9
  6. G. H. Hardy and J. E. Littlewood, Some properties of fractional integrals II, Math. Z. 34 (1932), 403-439 https://doi.org/10.1007/BF01180596
  7. T. L. Kriete and B. D. MacCluer, Composition operators on large weighted Bergman spaces, Indiana Univ. Math. J. 41 (1992), 755-788 https://doi.org/10.1512/iumj.1992.41.41040
  8. P. Lin and R. Rochberg, Hankel operators on the weighted Bergman spaces with exponential weights, Integral Equations Operator Theory 21 (1995), 460-483 https://doi.org/10.1007/BF01222018
  9. M. Nowak, Bloch space on the unit ball of $C^n$, Ann. Acad. Sci. Fenn. Math. 23 (1998), 461-473
  10. C. Ouyang, W. Yang, and R. Zhao, Characterizations of Bergman spaces and Bloch space in the unit ball of $C^n$, Trans. Amer. Math. Soc. 347 (1995), no. 11, 4301-4313 https://doi.org/10.2307/2155039
  11. M. Pavlovic, Decompositions of $L^p$ and Hardy spaces of polyharmonic functions, J. Math. Anal. Appl. 216 (1997), 499-509 https://doi.org/10.1006/jmaa.1997.5675
  12. G. Ren and U. Kahler, Hardy-Littlewood inequalities and $Q_p$-spaces, Z. Anal. Anwendungen 24 (2005), no. 2, 375-388
  13. W. Rudin, Function theory in the unit ball of $C^n$, Springer-Verlag, Berlin, Heidelberg, New York, 1980
  14. J. H. Shi, Inequalities for the integral means of holomorphic functions and their derivatives in the unit ball of $C^n$, Trans. Amer. Math. Soc. 328 (1991), no. 2, 619-637 https://doi.org/10.2307/2001797
  15. A. Siskakis, Weighted integrals of analytic functions, Acta Sci. Math. 66 (2000), 651-664
  16. S. Stevic, A note on weighted integrals of analytic functions, Bull. Greek Math. Soc. 46 (2002), 3-9
  17. S. Stevic, Weighted integrals of harmonic functions, Studia Sci. Math. Hung. 39 (2002), no. 1-2, 87-96
  18. S. Stevic, Weighted integrals of holomorphic functions on the polydisk, Z. Anal. Anwendungen 23 (2004), no. 3, 577-587
  19. S. Stevic, Weighted integrals of holomorphic functions on the unit polydisk II, Z. Anal. Anwendungen 23 (2004), no. 4, 775-782
  20. S. Stevic, Weighted integrals of holomorphic functions in the unit polydisk, J. Inequal. Appl. 2005 (2005), no. 5, 583-590 https://doi.org/10.1155/JIA.2005.583
  21. K. J. Wirths and J. Xiao, An image-area inequality for some planar holomorphic maps, Results Math. 38 (2000), no. 1-2, 172-179 https://doi.org/10.1007/BF03322440
  22. K. Zhu, The Bergman spaces, the Bloch spaces, and Gleason's problem, Trans. Amer. Math. Soc. 309 (1988), no. 1, 253-268 https://doi.org/10.2307/2001168
  23. K. Zhu, Duality and Hankel operators on the Bergman spaces of bounded symmetric domains, J. Funct. Anal. 81 (1988), 260-278 https://doi.org/10.1016/0022-1236(88)90100-0
  24. K. Zhu, Operator theory in function spaces, Pure and Applied Mathematics 139, Marcel Dekker, Inc., New York-Basel, 1990

피인용 문헌

  1. Norms of some operators on the Bergman and the Hardy space in the unit polydisk and the unit ball vol.215, pp.6, 2009, https://doi.org/10.1016/j.amc.2009.08.014
  2. On the fractional integro-differentiation operator in ℝ n vol.50, pp.5, 2015, https://doi.org/10.3103/S1068362315050040
  3. Weighted composition operators from weighted Bergman spaces to weighted-type spaces on the unit ball vol.212, pp.2, 2009, https://doi.org/10.1016/j.amc.2009.02.057
  4. Mixed norm variable exponent Bergman space on the unit disc vol.61, pp.8, 2016, https://doi.org/10.1080/17476933.2016.1140750
  5. On a New Integral-Type Operator from the Weighted Bergman Space to the Bloch-Type Space on the Unit Ball vol.2008, 2008, https://doi.org/10.1155/2008/154263
  6. Weighted Integrals and Bloch Spaces of n-Harmonic Functions on the Polydisc vol.29, pp.1, 2008, https://doi.org/10.1007/s11118-008-9087-3
  7. The Numerical Range of Toeplitz Operator on the Polydisk vol.2009, 2009, https://doi.org/10.1155/2009/757964