DOI QR코드

DOI QR Code

ELEMENTS OF THE KKM THEORY ON CONVEX SPACES

  • Park, Se-Hie (The National Academy of Sciences, Department of Mathematical Sciences Seoul National University)
  • 발행 : 2008.01.31

초록

We introduce a new concept of convex spaces and a multimap class K having certain KKM property. From a basic KKM type theorem for a K-map defined on an convex space without any topology, we deduce ten equivalent formulations of the theorem. As applications of the equivalents, in the frame of convex topological spaces, we obtain Fan-Browder type fixed point theorems, almost fixed point theorems for multimaps, mutual relations between the map classes K and B, variational inequalities, the von Neumann type minimax theorems, and the Nash equilibrium theorems.

키워드

참고문헌

  1. P. S. Alexandroff, Combinatorial Topology, OGIZ, Moscow-Leningrad, 1947. [Russian]
  2. P. Alexandroff and H. Hopf, Topologie I, Springer, Berlin-Heidelberg-New York, 1974
  3. P. Alexandroff and B. Pasynkoff, Elementary proof of the essentiality of the identical mapping of a simplex, Uspehi Mat. Nauk (N.S.) 12 (1957), no. 5 (77), 175-179. [Russian]
  4. A. Amini, M. Fakhar, and J. Zafarani, Fixed point theorems for the class S-KKM mappings in abstract convex spaces, Nonlinear Anal. 66 (2006), 14-21 https://doi.org/10.1016/j.na.2005.11.005
  5. H. Ben-El-Mechaiekh, P. Deguire, and A. Granas, Points fixes et coincidences pour les applications multivoques (applications de Ky Fan), C. R. Acad. Sci. Paris Ser. I Math. 295 (1982), no. 4, 337-340
  6. H. Ben-El-Mechaiekh, P. Deguire, and A. Granas, Points fixes et coincidences pour les fonctions multivoques II (applications de type ${\varphi}$ et ${\varphi}^{\ast}$), C. R. Acad. Sci. Paris 295 (1982), no. 5, 381-384
  7. A. Borglin and H. Keiding, Existence of equilibrium actions and of equilibrium, J. Math. Econom. 3 (1976), no. 3, 313-316 https://doi.org/10.1016/0304-4068(76)90016-1
  8. F. E. Browder, The fixed point theory of multi-valued mappings in topological vector spaces, Math. Ann. 177 (1968), 283-301 https://doi.org/10.1007/BF01350721
  9. T.-H. Chang and C.-L. Yen, KKM property and fixed point theorems, J. Math. Anal. Appl. 203 (1996), no. 1, 224-235 https://doi.org/10.1006/jmaa.1996.0376
  10. T.-H. Chang, Y.-Y. Huang, J.-C. Jeng, and K.-H. Kuo, On S-KKM property and related topics, J. Math. Anal. Appl. 229 (1999), no. 1, 212-227 https://doi.org/10.1006/jmaa.1998.6154
  11. K. Fan, A generalization of Tychonoff's fixed point theorem, Math. Ann. 142 (1961), 305-310 https://doi.org/10.1007/BF01353421
  12. K. Fan, Sur un theoreme minimax, C. R. Acad. Sci. Paris 259 (1964), 3925-3928
  13. K. Fan, Applications of a theorem concerning sets with convex sections, Math. Ann. 163 (1966), 189-203 https://doi.org/10.1007/BF02052284
  14. K. Fan, Extensions of two fixed point theorems of F. E. Browder, Math. Z. 112 (1969), 234-240 https://doi.org/10.1007/BF01110225
  15. K. Fan, A minimax inequality and applications, Inequalities III (O. Shisha, ed.), 103-113, Academic Press, New York, 1972
  16. K. Fan, A further generalization of Shapley's generalization of the Knaster-Kuratowski-Mazurkiewicz theorem, Game Theory and Mathematical Economics (O. Moeschlin and D. Palaschke, ed.), 275-279, North-Holland, Amsterdam, 1981
  17. K. Fan, Some properties of convex sets related to fixed point theorems, Math. Ann. 266 (1984), no. 4, 519-537 https://doi.org/10.1007/BF01458545
  18. C. J. Himmelberg, Fixed points of compact multifunctions, J. Math. Anal. Appl. 38 (1972), 205-207 https://doi.org/10.1016/0022-247X(72)90128-X
  19. C. D. Horvath, Some results on multivalued mappings and inequalities without convexity, Nonlinear and Convex Analysis- Proc. in honor of Ky Fan (B. L. Lin and S. Simons, eds.), 99-106, Marcel Dekker, New York, 1987
  20. C. D. Horvath, Convexite generalisee et applications, Sem. Math. Super. 110, 79-99, Press. Univ. Montreal, 1990
  21. C. D. Horvath, Contractibility and generalized convexity, J. Math. Anal. Appl. 156 (1991), no. 2, 341-357 https://doi.org/10.1016/0022-247X(91)90402-L
  22. C. D. Horvath, Extension and selection theorems in topological spaces with a generalized convexity structure, Ann. Fac. Sci. Toulouse Math. (6) 2 (1993), no. 2, 253-269 https://doi.org/10.5802/afst.766
  23. H. Kim, KKM property, S-KKM property and fixed point theorems, Nonlinear Anal. 63 (2005), e1877-e1884 https://doi.org/10.1016/j.na.2005.02.045
  24. H. Kim and S. Park, Remarks on the KKM property for open-valued multimaps on generalized convex spaces, J. Korean Math. Soc. 42 (2005), no. 1, 101-110 https://doi.org/10.4134/JKMS.2005.42.1.101
  25. B. Knaster, K. Kuratowski, and S. Mazurkiewicz, Ein Beweis des Fixpunktsatzes fur n-Dimensionale Simplexe, Fund. Math. 14 (1929), 132-137 https://doi.org/10.4064/fm-14-1-132-137
  26. M. Lassonde, On the use of KKM multifunctions in fixed point theory and related topics, J. Math. Anal. Appl. 97 (1983), no. 1, 151-201 https://doi.org/10.1016/0022-247X(83)90244-5
  27. J. Nash, Non-cooperative games, Ann. of Math. (2) 54 (1951), 286-293 https://doi.org/10.2307/1969529
  28. S. Park, Generalizations of Ky Fan's matching theorems and their applications, J. Math. Anal. Appl. 141 (1989), no. 1, 164-176 https://doi.org/10.1016/0022-247X(89)90213-8
  29. S. Park, Generalized matching theorems for closed coverings of convex sets, Numer. Funct. Anal. Optim. 11 (1990), no. 1-2, 101-110 https://doi.org/10.1080/01630569008816363
  30. Some coincidence theorems on acyclic multifunctions and applications to KKM theory, Fixed Point Theory and Applications (K.-K. Tan, ed.), 248-277, World Sci. Publ., River Edge, NJ, 1992
  31. S. Park, Foundations of the KKM theory via coincidences of composites of upper semicontinuous maps, J. Korean Math. Soc. 31 (1994), no. 3, 493-519
  32. S. Park, A unified approach to generalizations of the KKM-type theorems related to acyclic maps, Numer. Funct. Anal. Optim. 15 (1994), no. 1-2, 105-119 https://doi.org/10.1080/01630569408816553
  33. S. Park, Coincidence theorems for the better admissible multimaps and their applications, Nonlinear Anal. 30 (1997), no. 7, 4183-4191 https://doi.org/10.1016/S0362-546X(97)00385-4
  34. S. Park, A unified fixed point theory of multimaps on topological vector spaces, J. Korean Math. Soc. 35 (1998), no. 4, 803-829
  35. S. Park, Corrections, J. Korean Math. Soc. 36 (1999), no. 4, 829-832
  36. S. Park, Ninety years of the Brouwer fixed point theorem, Vetnam J. Math. 27 (1999), no. 3, 187-222
  37. S. Park, Elements of the KKM theory for generalized convex spaces, Korean J. Comp. Appl. Math. 7 (2000), no. 1, 1-28
  38. S. Park, Remarks on topologies of generalized convex spaces, Nonlinear Funct. Anal. Appl. 5 (2000), no. 2, 67-79
  39. S. Park, New topological versions of the Fan-Browder fixed point theorem, Nonlinear Anal. 47 (2001), no. 1, 595-606 https://doi.org/10.1016/S0362-546X(01)00204-8
  40. S. Park, Fixed point theorems in locally G-convex spaces, Nonlinear Anal. 48 (2002), no. 6, Ser. A: theory Methods, 869-879 https://doi.org/10.1016/S0362-546X(00)00220-0
  41. S. Park, Coincidence, almost fixed point, and minimax theorems on generalized convex spaces, J. Nonlinear Convex Anal. 4 (2003), no. 1, 151-164
  42. S. Park, On generalizations of the KKM principle on abstract convex spaces, Nonlinear Anal. Forum 11 (2006), no. 1, 67-77
  43. S. Park and K. S. Jeong, Fixed point and non-retract theorems - Classical circular tours, Taiwanese J. Math. 5 (2001), no. 1, 97-108 https://doi.org/10.11650/twjm/1500574889
  44. S. Park and H. Kim, Admissible classes of multifunctions on generalized convex spaces, Proc. Coll. Natur. Sci., Seoul Nat. Univ. 18 (1993), 1-21
  45. S. Park and H. Kim, Coincidences of composites of u.s.c. maps on H-spaces and applications, J. Korean Math. Soc. 32 (1995), no. 2, 251-264
  46. S. Park and H. Kim, Coincidence theorems for admissible multifunctions on generalized convex spaces, J. Math. Anal. Appl. 197 (1996), no. 1, 173-187 https://doi.org/10.1006/jmaa.1996.0014
  47. S. Park and H. Kim, Foundations of the KKM theory on generalized convex spaces, J. Math. Anal. Appl. 209 (1997), no. 2, 551-571 https://doi.org/10.1006/jmaa.1997.5388
  48. M. Sion, On general minimax theorems, Pacific J. Math. 8 (1958), 171-176 https://doi.org/10.2140/pjm.1958.8.171
  49. B. P. Sortan, Introduction to Axiomatic Theory of Convexity, Kishyneff, 1984. [Russian with English summary.]
  50. J. von Neumann, Zur Theorie der Gesellschaftsspiele, Math. Ann. 100 (1928), no. 1, 295-320 https://doi.org/10.1007/BF01448847
  51. J. von Neumann, Uber ein okonomisches Gleichungssystem und eine Verallgemeinerung des Brouwerschen Fixpunktsatzes, Ergeb. Math. Kolloq. 8 (1937), 73-83
  52. N. Yannelis and N. D. Prabhakar, Existence of maximal elements and equilibria in linear topological spaces, J. Math. Econom. 12 (1983), no. 3, 233-245 https://doi.org/10.1016/0304-4068(83)90041-1

피인용 문헌

  1. APPLICATIONS OF RESULTS ON ABSTRACT CONVEX SPACES TO TOPOLOGICAL ORDERED SPACES vol.50, pp.1, 2013, https://doi.org/10.4134/BKMS.2013.50.1.305
  2. Fixed Points, Maximal Elements and Equilibria of Generalized Games in Abstract Convex Spaces vol.2012, 2012, https://doi.org/10.1155/2012/842515
  3. New generalizations of basic theorems in the KKM theory vol.74, pp.9, 2011, https://doi.org/10.1016/j.na.2011.01.020
  4. The KKM principle in abstract convex spaces: Equivalent formulations and applications vol.73, pp.4, 2010, https://doi.org/10.1016/j.na.2010.04.029
  5. Generalized convex spaces, L-spaces, and FC-spaces vol.45, pp.2, 2009, https://doi.org/10.1007/s10898-008-9363-1
  6. A Collectively Fixed Point Theorem in Abstract Convex Spaces and Its Applications vol.2013, 2013, https://doi.org/10.1155/2013/517469
  7. The Fan minimax inequality implies the Nash equilibrium theorem vol.24, pp.12, 2011, https://doi.org/10.1016/j.aml.2011.06.027
  8. COMMENTS ON DING'S EXAMPLES OF FC-SPACES AND RELATED MATTERS vol.27, pp.1, 2012, https://doi.org/10.4134/CKMS.2012.27.1.137
  9. Comments on abstract convexity structures on topological spaces vol.72, pp.2, 2010, https://doi.org/10.1016/j.na.2009.06.100
  10. Remarks on some basic concepts in the KKM theory vol.74, pp.7, 2011, https://doi.org/10.1016/j.na.2010.10.035
  11. Fixed point theory of multimaps in abstract convex uniform spaces vol.71, pp.7-8, 2009, https://doi.org/10.1016/j.na.2009.01.081
  12. COINCIDENCE THEOREMS FOR NONCOMPACT ℜℭ-MAPS IN ABSTRACT CONVEX SPACES WITH APPLICATIONS vol.49, pp.6, 2012, https://doi.org/10.4134/BKMS.2012.49.6.1147
  13. On the von Neumann–Sion minimax theorem in KKM spaces vol.23, pp.10, 2010, https://doi.org/10.1016/j.aml.2010.06.011
  14. Remarks on Weakly KKM Maps in Abstract Convex Spaces vol.2008, 2008, https://doi.org/10.1155/2008/423596
  15. Evolution of the Minimax Inequality of Ky Fan vol.2013, 2013, https://doi.org/10.1155/2013/124962
  16. Fixed point theorems and $$L^{*}$$L∗-operators vol.20, pp.1, 2018, https://doi.org/10.1007/s11784-018-0494-9
  17. Applications of some basic theorems in the KKM theory vol.2011, pp.1, 2011, https://doi.org/10.1186/1687-1812-2011-98
  18. Evolution of the 1984 KKM theorem of Ky Fan vol.2012, pp.1, 2012, https://doi.org/10.1186/1687-1812-2012-146