Daphnia magna를 이용한 세리아, 실리카, 티타늄 나노물질의 유전독성 평가

Genotoxicity of $CeO_2$, $SiO_2$ and $TiO_2$ Nanoparticles in the Freshwater Crustacean Daphnia magna

  • 김성만 (서울시립대학교 환경공학부 독성학연구실) ;
  • 최진희 (서울시립대학교 환경공학부 독성학연구실)
  • Kim, Sung-Man (Faculty of Environmental Engineering, College of Urban Study, University of Seoul) ;
  • Choi, Jin-Hee (Faculty of Environmental Engineering, College of Urban Study, University of Seoul)
  • 발행 : 2008.06.30

초록

본 연구에서는, 세리아($CeO_2$), 실리카($SiO_2$) 및 티타늄($TiO_2$) 나노입자의 유전독성과 생태독성 평가를 위하여 바이오 모니터링에 널리 이용되는 수생생태 감시종인 Daphnia magna를 사용하였다. 합성한 나노입자 세리아와 공업적으로 상용되는 실리카 및 티타늄을 유전독성 및 생태독성평가에 이용하였다. 세리아의 경우, D. magna의 DNA의 파괴가 증가함을 통해 세리아의 유전독성 가능성을 확인할 수 있었으나, 실리카 및 티타늄의 경우에는 두 물질 모두 유전독성 영향이 나타나지 않았다. 실리카는 DNA에는 영향을 미치지 않는 것으로 보이나, 실리카에 노출된 D. magna의 사멸은 증가하는 결과를 보였다. 그러나, 티타늄에 노출된 D. magna에서는 유전독성 및 생태독성 인자의 유의적인 변화를 관찰할 수 없었다. 이상의 전체 결과를 통하여 예상할 수 있는 것은 세리아 나노입자가 D. magna에 유전독성을 일으킬 수 있다는 점이다. 이 결과는 나노입자가 광범위하게 이용되고 있으나 독성 관련 자료가 미약한 현재에 수생태 관련 독성 연구 결과로서 이바지 할 수 있을 것으로 여겨진다.

키워드

참고문헌

  1. Atienzar FA, Cheung VV, Jha AN and Depledge MH. Fitness parameters and DNA effects are sensitive indicatiors of copper-induced toxicity in Daphnia magna, Toxicol Sci 2001; 59: 241-250 https://doi.org/10.1093/toxsci/59.2.241
  2. Braydich-Stolle L, Hussain S, Schlager JJ and Hofmann MC. In vitro cytotoxicity of nanoparticles in mammalian germline stem cells, Toxicol Sci 2005; 88: 412-419 https://doi.org/10.1093/toxsci/kfi256
  3. Brendler-Schwaab S, Hartmann A, Pfuhler S and Speit G. The in vivo comet assay: use and status in genotoxicity testing, Mutagen 2005; 20: 245-254 https://doi.org/10.1093/mutage/gei033
  4. Caruso RA, Antonietti M, Giersig M, Hentze HP and Jia J. Modification of $TiO_2$ network structures using a polymer gel coating technique, Chem Mater 2001; 13: 1114- 1123 https://doi.org/10.1021/cm001222z
  5. Chen G and White PA. The mutagenic hazards of aquatic sediments: a review, Mutat Res 2004; 567: 151-225 https://doi.org/10.1016/j.mrrev.2004.08.005
  6. Choi J, Roche H and Caquet T. Effects of physical (hypoxia, hyperoxia) and chemical (potassium dichromate, fenitrothion) stress on antioxidant enzyme activities in Chironomus riparius Mg. (Diptera, Chironomidae) larvae: potential biomarkers, Environ Toxicol Chem 2000; 19: 495-500 https://doi.org/10.1897/1551-5028(2000)019<0495:EOPHHA>2.3.CO;2
  7. Collins AR, Dobson VL, Dusinska M, Kennedy G and Stetina R. The comet assay: what can it really tell us?, Mutat Res 1997; 375: 183-193 https://doi.org/10.1016/S0027-5107(97)00013-4
  8. Corma A, Atienzar P, García H and Chane-Ching JY. Hierarchically mesostructured doped CeO2 with potential for solar-cell use, Nat Mater 2004; 3: 394-397 https://doi.org/10.1038/nmat1129
  9. Cotelle S and Ferard JF. Comet assay in genetic ecotoxicology: a review, Environ Mol Mutagen 1999; 34: 246- 255 https://doi.org/10.1002/(SICI)1098-2280(1999)34:4<246::AID-EM4>3.0.CO;2-V
  10. Cranston PS. 1995. The Chironomidae-The biology and ecology of non-bitting Midges. Chapman & hall London UK
  11. Depledge MH. The ecotoxicological significance of genotoxicity in marine invertebrates, Mutat Res 1998; 13: 109-122
  12. Fujishima A, Rao TN and Tryk DA. 2000. Titanium dioxide photocatalysis, J Photochem Photobiol C: Chem Rev 2000; 1: 1-21 https://doi.org/10.1016/S1389-5567(00)00002-2
  13. Gemeinhart RA, Luo D and Saltzman WM. Cellular fate of a modular DNA delivery system mediated by silica nanoparticles, Biotechnol Prog 2005; 21: 532-537 https://doi.org/10.1021/bp049648w
  14. Giesy JP, Graney RL, Newsted JL, Rosiu CL, Benda A, Kreis RG Jr and Horvath FJ. Comparison of three sediment bioassay methods using Detroit river sediments, Environ Toxicol Chem 1988; 7: 483-498 https://doi.org/10.1897/1552-8618(1988)7[483:COTSBM]2.0.CO;2
  15. Gratzel M. 1999. Mesoporous oxide junction and nanostructured solar cells. Current Opinion in Colloid Interface Sci 4: 314-321 https://doi.org/10.1016/S1359-0294(99)90013-4
  16. Handy RD and Shaw BJ. Ecotoxicity of nanomaterials to fish: challenges for ecotoxicity testing, Integr Environ Assess Manag 2007; 3: 458-460
  17. Hirsch LR, Stafford RJ, Bankson JA, Sershen SR, Rivera B, Price RE, Hazle JD, Halas NJ and West JL. Nanoshellmediated near-infrared thermal therapy of tumors under magnetic resonance guidance, Proc Natl Acad Sci U.S.A 2003; 100: 13549-13554 https://doi.org/10.1073/pnas.2232479100
  18. Houk VS and Waters MD. Genetic toxicology and risk assessment of complex environmental mixtures, Drug Chem Toxicol 1996; 19: 187-219 https://doi.org/10.3109/01480549608998234
  19. Hussain SM, Hess KL, Gearhart JM, Geiss KT and Schlager JJ. In vitro toxicity of nanoparticles in BRL 3A rat liver cells, Toxicol In Vitro 2005; 19: 975-983 https://doi.org/10.1016/j.tiv.2005.06.034
  20. Izu N, Shin W, Matsubara I and Murayama N. Development of resistive oxygen sensors based on cerium oxide thick film, J Electroceram 2004; 13: 703-706 https://doi.org/10.1007/s10832-004-5179-7
  21. Jha AN. Genotoxicological studies in aquatic organisms: an overview, Mutat Res 2004; 552: 1-17 https://doi.org/10.1016/j.mrfmmm.2004.06.034
  22. Hund-Rinke K and Simon M. Ecotoxic effect of photocatalytic active nanoparticles ($TiO_2$) on algae and Daphnids, Environ Sci Pollut Res Int 2006; 13(4): 225-232 https://doi.org/10.1065/espr2006.06.311
  23. Kikuchi M, Sasaki Y and Wakabayashi M. Screening of organophosphate insecticide pollution in water by using Daphnia magna. Ecotoxicol Environ Saf 2000; 47: 239- 245 https://doi.org/10.1006/eesa.2000.1958
  24. Lam CW, James JT, McCluskey R and Hunter RL. Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation, Toxicol Sci 2004; 77: 126-134
  25. Lee SB and Choi J. Multiple level evaluation of nonylphenol toxicity in 4th instar larvae of Chironomus riparius (Diptera, chironomidae), Environ Toxicol Chem 2006; 25: 3006-3014 https://doi.org/10.1897/05-601R1.1
  26. Lee SW, Park K, Hong JG and Choi J. Ecotoxicological evaluation of octachlorostyrene in fourth instar larvae of Chironomus riparius (Diptera, Chironomidae), Environ Toxicol Chem. 2008 (in press)
  27. Limbach LK, Wick P, Manser P, Grass RN, Bruinink A and Stark WJ. Exposure of engineered nanoparticles to human lung epithelial cells: influence of chemical composition and catalytic activity on oxidative stress, Environ Sci Technol 2007; 41: 4158-4163 https://doi.org/10.1021/es062629t
  28. Lovern SB and Klaper R. Daphnia magna mortality when exposed to titanium dioxide and fullerene (C60) nanoparticles, Environ Toxicol Chem 2006; 25: 1132-1137 https://doi.org/10.1897/05-278R.1
  29. Lovern SB, Strickler JR and Klaper R. Behavioral and physiological changes in Daphnia magna when exposed to nanoparticle suspensions (titanium dioxide, nano-C60, and C60HxC70Hx), Environ Sci Technol 2007; 41: 4465-4470 https://doi.org/10.1021/es062146p
  30. Moller P. The alkaline comet Assay: towards validation in biomonitoring of DNA damaging exposures, Basic Clin Pharmacol Toxicol 2006; 98: 336-345 https://doi.org/10.1111/j.1742-7843.2006.pto_167.x
  31. Monteiro-Riviere NA, Nemanich RJ, Inman AO, Wang YY and Riviere JE. Multi-walled carbon nanotube interactions with human epidermal keratinocytes, Toxicol Lett 2005; 155: 377-384 https://doi.org/10.1016/j.toxlet.2004.11.004
  32. Murray EP, Tsai T and Barnett SA. A direct methane fuel cell with a ceria based a node, Nature 1999; 400: 649- 651 https://doi.org/10.1038/23220
  33. Nehls S and Segner H. Comet assay with the fish cell line rainbow trout gonad-2 for in vitro genotoxicity testing of xenobiotics and surface waters, Environ Toxicol Chem 2005; 24: 2078-2087 https://doi.org/10.1897/04-301R.1
  34. Ohe T, Watanabe T and Wakabayashi K. Mutagens in surface waters: a review, Mutat Res 2004; 567: 109-149 https://doi.org/10.1016/j.mrrev.2004.08.003
  35. Okamura H, Omori M, Luo R, Aoyama I and Liu D. Application of short-term bioassay guided chemical analysis for water quality of agricultural land run-off, Sci Total Environ 1999; 30: 223-231
  36. OECD. Guidelines for testing of chemicals, vol. 1, section 2: Effects on biotic systems, Daphnia magna acute immobilization Test 202. 1984
  37. Park EJ, Choi J, Park YK and Park K. Oxidative stress induced by cerium oxide nanoparticles in cultured BEAS -2B cells, Toxicology 2008; 12: 90-100
  38. Sarah B, Lovern J, Rudi S and Rebecca K. Behavioral and physiological changes in Daphnia magna when exposed to nanoparticle suspensions (titanium dioxide, nano-C60, and C60HxC70Hx), Environ Sci Technol 2007; 41: 4465-4470 https://doi.org/10.1021/es062146p
  39. Singh NP, McCoy MT, Tice RR and Schneider EL. A simple technique for quantitation of low levels of DNA damage in individual cells, Exp Cell Res 1988; 175: 184-191 https://doi.org/10.1016/0014-4827(88)90265-0
  40. Tice RR, Agurell E, Anderson D, Burlinson B, Hartmann A and Kobayashi H. Single cell/gel comet assay: Guideline for in vitro and in vivo genetic testing, Environ Mol Mutagen 2000; 35: 206-221 https://doi.org/10.1002/(SICI)1098-2280(2000)35:3<206::AID-EM8>3.0.CO;2-J
  41. Venkatesan N, Yoshimitsu J, Ito Y, Shibata N amd Takada K. Liquid filled nanoparticles as a drug delivery tool for protein therapeutics, Biomaterials 2005; 26: 7154-7163 https://doi.org/10.1016/j.biomaterials.2005.05.012
  42. Zhang FF, Wan Q, Li CX, Wang XL, Zhu ZQ, Xian YZ, Jin LT and Yamamoto K. Simultaneous assay of glucose, lactate, L-glutamate and hypoxanthine levels in a rat striatum using enzyme electrodes based on neutral reddoped silica nanoparticles, Anal Bioanal Chem 2004; 380: 637-642 https://doi.org/10.1007/s00216-004-2804-x
  43. Zheng X, Zhang X, Wang X, Wang S and Wu S. Preparation and characterization of CuO/$CeO_2$ catalysts and their applications in low-temperature CO oxidation, Appl. Catal A Gen 2005; 295: 142-149 https://doi.org/10.1016/j.apcata.2005.07.048