소수성화학물질의 생물축적과 기저독성: 분자크기, 반응속도, 화학적 활성도에 따른 제약

Bioaccumulation and Baseline Toxicity of Hydrophobic Chemicals: Molecular Size Cutoff, Kinetic Limitations, and Chemical Activity Cut-off

  • 발행 : 2008.06.30

초록

It has been observed that the linear relationship between the logarithm of bioconcentration factor (log BCF) of highly hydrophobic chemicals and their log $K_{ow}$ breaks when log $K_{ow}$ becomes greater than 6.0. Consequently, super hydrophobic chemicals were not thought to cause baseline toxicity as a single compound. Researchers often call this phenomenon as "hydrophobicity cutoff" meaning that bioconcentration or corresponding baseline toxicity has a certain cutoff at high log $K_{ow}$ value of hydrophobic organic pollutants. The underlying assumption is that the increased molecular size with increasing hydrophobicity prohibits highly hydrophobic compounds from crossing biological membranes. However, there are debates among scientists about mechanisms and at which log $K_{ow}$ this phenomenon occurs. This paper reviews three hypotheses to explain observed "cutoff": steric effects, kinetic or physiological limitations, and chemical activity cutoff. Although the critical molecular size that makes biological membranes not permeable to hydrophobic organic chemicals is uncertain, size effects in combination with kinetic limitation would explain observed non-linearity between log BCF and log $K_{ow}$. Chemical activity of hydrophobic chemicals generally decreases with increasing melting point at their aqueous solubility. Thus, there may be a chemical activity cutoff of baseline toxicity if there is a critical chemical activity over which baseline effects can be observed.

키워드

참고문헌

  1. Albert B, Johnson A, Lewis J, Raff M, Roberts K and Walter P. Molecular Biology of the Cell, 4th edition. New York, NY, USA: Garland Science. 2002
  2. Barber MC. A review and comparison of models for predicting dynamic chemical bioconcentration in fish, Environ Toxicol Chem 2003; 22(9): 1963-1992 https://doi.org/10.1897/02-468
  3. Bopp SK, Bols NC and Schirmer K. Development of a solvent- free, solid-phase in vitro bioassay using vertebrate cells, Environ Toxicol Chem 2006; 25(5): 1390-1398 https://doi.org/10.1897/05-374R.1
  4. Brown RS, Akhtar P, Akerman J, Hampel L, Kozin IS, Villerius LA and Klamer HJC. Partition controlled delivery of hydrophobic substances in toxicity tests using poly(dimethylsiloxane) (PDMS) films, Environ Sci Technol 2001; 35(20): 4097-4102 https://doi.org/10.1021/es010708t
  5. Bruggeman WA, Opperhuizen A, Wijbenga A and Hutzinger O. Bioaccumulation of super-lipophilic chemicals in fish, Toxicol Environ Chem 1984; 7(3):173-189 https://doi.org/10.1080/02772248409357024
  6. Chiou CT, Schmedding DW and Manes M. Partitioning of Organic-Compounds in Octanol-Water Systems, Environ Sci Technol 1982; 16(1): 4-10
  7. Chiou CT, Schmedding DW and Manes M. Improved prediction of octanol-water partition coefficients from liquid-solute water solubilities and molar volumes, Environ Sci Technol 2005; 39(22): 8840-8846 https://doi.org/10.1021/es050729d
  8. D'Adamo R, Pelosi S, Trotta P and Sansone G. Bioaccumulation and biomagnification of polycyclic aromatic hydrocarbons in aquatic organisms, Mar Chem 1997; 56(1-2): 45-49 https://doi.org/10.1016/S0304-4203(96)00042-4
  9. Davies RP and Dobbs AJ. The prediction of bioconcentration in fish, Wat Res 1984; 18(10): 1253-1262 https://doi.org/10.1016/0043-1354(84)90030-7
  10. Dimitrov S, Dimitrova N, Parkerton T, Comber M, Bonnell M and Mekenyan O. Base-line model for identifying the bioaccumulation potential of chemicals, SAR QSAR Environ Res 2005; 16(6): 531-554 https://doi.org/10.1080/10659360500474623
  11. Dimitrov SD, Dimitrova NC, Walker JD, Veith GD and Mekenyan OG. Predicting bioconcentration factors of highly hydrophobic chemicals. Effects of molecular size, Pure Appl Chem 2002; 74(10):1823-1830 https://doi.org/10.1351/pac200274101823
  12. Dulfer WJ and Govers HAJ. Membrane water partitioning of polychlorinated-biphenyls in small unilamellar vesicles of 4 saturated phosphatidylcholines, Environ Sci Technol 1995; 29(10): 2548-2554 https://doi.org/10.1021/es00010a014
  13. EC. 1996. Technical Guidance Document in support of Commission Directive 93/67/EEC on risk assessment for new notified substances and Commission Regulation (EC) 1488/94 on risk assessment for existing substances. PART III, ISBN 92-827-8011-2. Luxembourg
  14. Escher BI, Eggen RIL, Schreiber U, Schreiber Z, Vye E, Wisner B and Schwarzenbach RP. Baseline toxicity (narcosis) of organic chemicals determined by in vitro membrane potential measurements in energy-transducing membranes, Environ Sci Technol 2002; 36(9): 1971- 1979 https://doi.org/10.1021/es015844c
  15. Escher BI and Hermens JLM. Modes of action in ecotoxicology: Their role in body burdens, species sensitivity, QSARs, and mixture effects, Environ Sci Technol 2002; 36(20): 4201-4217 https://doi.org/10.1021/es015848h
  16. Escher BI and Hermens JLM. Internal exposure: Linking bioavailability to effects, Environ Sci Technol 2004; 38 (23): 455A-462A https://doi.org/10.1021/es0406740
  17. Escher BI and Schwarzenbach RP. Mechanistic studies on baseline toxicity and uncoupling of organic compounds as a basis for modeling effective membrane concentrations in aquatic organisms, Aquat Sci 2002; 64(1): 20- 35 https://doi.org/10.1007/s00027-002-8052-2
  18. Escher BI, Schwarzenbach RP and Westall JC. Evaluation of liposome-water partitioning of organic acids and bases. 1. Development of a sorption model, Environ Sci Technol 2000; 34(18): 3954-3961 https://doi.org/10.1021/es0010709
  19. Franks NP and Lieb WR. Molecular and cellular mechanisms of general-anesthesia, Nature 1994; 367(6464): 607-614 https://doi.org/10.1038/367607a0
  20. Gobas FAPC, Lahittete JM, Garofalo G, Wan YS and Mackay D. A novel method for measuring membrane-water partition coefficients of hydrophobic organic chemicalscomparison with 1-octanol-water partitioning, J Pharm Sci 1988; 77(3): 265-272 https://doi.org/10.1002/jps.2600770317
  21. Gobas FAPC and Morrison HA. Bioconcentration and biomagnification in the aquatic environment. In: Boethling RS, Mackay D, editors. Handbook of Property Estimation Methods for Chemicals. Boca Raton, FL: CRC Press. 2000: p. 189-231
  22. Gobas FAPC, Opperhuizen A and Hutzinger O. Bioconcentration of hydrophobic chemicals in fish-relationship with membrane permeation, Environ Toxicol Chem 1986; 5(7): 637-646 https://doi.org/10.1897/1552-8618(1986)5[637:BOHCIF]2.0.CO;2
  23. Gobas FAPC, Wilcockson JB, Russell RW, and Haffner GD. Mechanism of biomagnification in fish under laboratory and field conditions, Environ Sci Technol 1999; 33(1): 133-141 https://doi.org/10.1021/es980681m
  24. Heringa MB, Pastor D, Algra J, Vaes WHJ and Hermens JLM. Negligible depletion solid-phase microextraction with radiolabeled analytes to study free concentrations and protein binding: an example with [H-3]estradiol, Anal Chem 2002; 74(23): 5993-5997 https://doi.org/10.1021/ac0204552
  25. Heringa MB, Schreurs RHMM, Busser F, Van Der Saag PT, Van Der Burg B, and Hermens JLM. Toward more useful in vitro toxicity data with measured free concentrations, Environ Sci Technol 2004; 38(23): 6263-6270 https://doi.org/10.1021/es049285w
  26. Jonker MTO and van der Heijden SA. Bioconcentration factor hydrophobicity cutoff: An artificial phenomenon reconstructed, Environ Sci Technol 2007; 41(21): 7363- 7369 https://doi.org/10.1021/es0709977
  27. Katz Y and Diamond JM. Thermodynamic constants for nonelectrolyte partition between dimyristoyl lecithin and water, J Mem Biol 1974; 17(2): 101-120 https://doi.org/10.1007/BF01870175
  28. Kelly BC, Ikonomou MG, Blair JD, Morin AE and Gobas FAPC. Food-web specific biomagnification of persistent organic pollutants, Science 2007; 317(5835): 236-239 https://doi.org/10.1126/science.1138275
  29. Kwon J-H, Katz LE, and Liljestrand HM. Modeling binding equilibrium in a competitive estrogen receptor binding assay, Chemosphere 2007a; 69: 1025-1031 https://doi.org/10.1016/j.chemosphere.2007.04.047
  30. Kwon J-H, Liljestran HM Katz LE and Yamamoto H. Partitioning thermodynamics of selected endocrine disruptors between water and synthetic membrane vesicles: Effects of membrane compositions, Environ Sci Technol 2007b; 41(11): 4011-4018 https://doi.org/10.1021/es0618200
  31. Kwon J-H, Liljestrand HM and Katz LE. Partitioning of moderately hydrophobic endocrine disruptors between water and synthetic membrane vesicles, Environ Toxicol Chem 2006; 25(8): 1984-1992 https://doi.org/10.1897/05-550R.1
  32. Kwon J-H, Wuethrich T and Escher BI. Baseline toxicity of hydrophobic compounds: Development of a kinetically controlled dosing system and determination of membrane perturbation; Presented at SETAC EU 18th Annual Meeting 2008; Warsaw, Poland
  33. Lewis GN. The law of physico-chemical change, Proc Am Acad Arts Sci 1901; 37: 49-69 https://doi.org/10.2307/20021635
  34. Mackay D. Correlation of bioconcentration factors, Environ Sci Technol 1982; 16(5): 274-278 https://doi.org/10.1021/es00099a008
  35. Mackay D. Multimedia Environmental Models-The Fugacity Approach. Chelsea, MI: Lewis Publishers, Inc. 1991
  36. Mayer P and Reichenberg F. Can highly hydrophobic organic substances cause aquatic baseline toxicity and can they contribute to mixture toxicity?, Environ Toxi-col Chem 2006; 25(10): 2639-2644 https://doi.org/10.1897/06-142R.1
  37. Meyer H. Welcher eigenschaft der anaesthetica bedingt ihre narkotische wirkung?, Arch Exp Pathol Pharmacol 1899; 42: 109-118 https://doi.org/10.1007/BF01834479
  38. Meylan WM and Howard PH. Atom fragment contribution method for estimating octanol-water partition-coefficients, J Pharm Sci 1995; 84(1): 83-92 https://doi.org/10.1002/jps.2600840120
  39. Meylan WM, Howard PH, Boethling RS, Aronson D, Printup H and Gouchie S. Improved method for estimating bioconcentration/bioaccumulation factor from octanol /water partition coefficient, Environ Toxicol Chem 1999; 18(4): 664-672 https://doi.org/10.1897/1551-5028(1999)018<0664:IMFEBB>2.3.CO;2
  40. Moore MN. Do nanoparticles present ecotoxicological risks for the health of aquatic environment?, Environ Int 2006; 32(8): 967-976 https://doi.org/10.1016/j.envint.2006.06.014
  41. Muir DCG and Yarechewski AL. Dietary accumulation of four chlorinated dioxin congeners by rainbow trout and fathead minnows, Environ Toxicol Chem 1988; 7(3): 227-236 https://doi.org/10.1897/1552-8618(1988)7[227:DAOFCD]2.0.CO;2
  42. Muir DCG, Yarechewski AL, Knoll A and Webster GRB. Bioconcentration and disposition of 1,3,6,8-tetrachlorodibenzo- p-dioxin and octachlorodibenzo-p-dioxin by rainbow trout and fathead minnows, Environ Toxicol Chem 1986; 5(3): 261-272 https://doi.org/10.1897/1552-8618(1986)5[261:BADOTA]2.0.CO;2
  43. Neely WB, Branson DR and Blau GE. Partition coefficients to measure bioconcentration potential of organic chemicals in fish, Environ Sci Technol 1974; 8(13): 1113-1115 https://doi.org/10.1021/es60098a008
  44. Nichols JW, Fitzsimmons PN and Burkhard LP. In vitro-in vivo extrapolation of quantitative hepatic biotransformation data for fish. II. Modeled effects on chemical bioaccumulation, Environ Toxicol Chem 2007; 26(6): 1304- 1319 https://doi.org/10.1897/06-259R.1
  45. Opperhuizen A, van der Velde EW, Gobas FAPC, Liem DAK and van der Steen JMD. Relationship between bioconcentration in fish and steric factors of hydrophobic chemicals, Chemosphere 1985; 14(11/12): 1871- 1896 https://doi.org/10.1016/0045-6535(85)90129-8
  46. Reichenberg F and Mayer P. Two complementary sides of bioavailability: Accessibility and chemical activity of organic contaminants in sediments and soils, Environ Toxicol Chem 2006; 25(5): 1239-1245 https://doi.org/10.1897/05-458R.1
  47. Reichenberg F, Smedes F, Jonsson JA and Mayer P. Determining the chemical activity of hydrophobic organic compounds in soil using polymer coated vials, Chemistry Central Journal 2008; (In Press)
  48. Sangster J. Octanol-water partition coefficients of simple organic compounds, J Phys Chem Ref Data 1989; 18(3): 1111-1229 https://doi.org/10.1063/1.555833
  49. Sijm DTHM and van der Linde A. Size-dependent biocon-centration kinetics of hydrophobic organic-chemicals in fish based on diffusive mass-transfer and allometric relationships, Environ Sci Technol 1995; 29(11):2769- 2777 https://doi.org/10.1021/es00011a011
  50. Sijm DTHM, Verberne ME, Dejonge WJ, Pärt P and Opperhuizen A. Allometry in the uptake of hydrophobic chemicals determined in-vivo and in isolated-perfused gills, Toxicol Appl Pharm 1995; 131(1): 130-135 https://doi.org/10.1006/taap.1995.1054
  51. Singer SJ and Nicolson GL. Fluid mosaic model of structure of cell-membranes, Science 1972; 175(4023): 720-731 https://doi.org/10.1126/science.175.4023.720
  52. Smejtek P, Blochel A and Wang SR. Hydrophobicity and sorption of chlorophenolates to lipid membranes, Chemosphere 1996; 33(1): 177-201 https://doi.org/10.1016/0045-6535(96)00158-0
  53. Swackhamer DL and Skoglund RS. Bioaccumulation of PCBs by algae: Kinetics versus equilibrium, Environ Toxicol Chem 1993; 12(5): 831-838 https://doi.org/10.1897/1552-8618(1993)12[831:BOPBAK]2.0.CO;2
  54. Ter Laak TL, Mayer P, Klamer HJC and Hermens JLM. Effects of dilution on the exposure in sediment toxicity tests buffering of freely dissolved concentrations and changes in mixture composition, Environ Toxicol Chem 2007; 26(10): 2187-2191 https://doi.org/10.1897/07-113R.1
  55. UNEP. 2007. Stockholm Convention on Persistent Organic Pollutants (POPs)
  56. Vaes WHJ, Ramos EU, Hamwijk C, vanHolsteijn I, Blaauboer BJ, Seinen W, Verhaar HJM, and Hermens JLM. Solid phase microextraction as a tool to determine membrane/ water partition coefficients and bioavailable concentrations in in vitro systems, Chem Res Toxicol 1997; 10(10): 1067-1072 https://doi.org/10.1021/tx970109t
  57. van Wezel AP, Cornelissen G, van Miltenburg JK and Opperhuizen A. Membrane burdens of chlorinated benzenes lower the main phase transition temperature in dipalmitoyl- phosphatidylcholine vesicles: Implications for toxicity by narcotic chemicals, Environ Toxicol Chem 1996; 15(2): 203-212 https://doi.org/10.1897/1551-5028(1996)015<0203:MBOCBL>2.3.CO;2
  58. Verhaar HJM, van Leeuwen CJ and Hermens JLM. Classifying environmental pollutants. 1. Structure-activity relationships for prediction of aquatic toxicity, Chemosphere 1992; 25(4): 471-491 https://doi.org/10.1016/0045-6535(92)90280-5