휴대용 멀티미디어 기기를 위한 400mA급 전류 방식 DC-DC 컨버터

400mA Current-Mode DC-DC Converter for Mobile Multimedia Application

  • 허동훈 (한양대학교 전자컴퓨터공학) ;
  • 남현석 (한양대학교 전자컴퓨터공학) ;
  • 이민우 (한양대학교 전자컴퓨터공학) ;
  • 안영국 (한양대학교 전자컴퓨터공학) ;
  • 노정진 (한양대학교 전자컴퓨터공학)
  • Heo, Dong-Hun (Dep. of Electronic, Electrical, Control and Instrumentation Engineering, Hanyang Univ.) ;
  • Nam, Hyun-Seok (Dep. of Electronic, Electrical, Control and Instrumentation Engineering, Hanyang Univ.) ;
  • Lee, Min-Woo (Dep. of Electronic, Electrical, Control and Instrumentation Engineering, Hanyang Univ.) ;
  • Ahn, Young-Kook (Dep. of Electronic, Electrical, Control and Instrumentation Engineering, Hanyang Univ.) ;
  • Roh, Jeong-Jin (Dep. of Electronic, Electrical, Control and Instrumentation Engineering, Hanyang Univ.)
  • 발행 : 2008.08.25

초록

최근 휴대용 멀티미디어 기기에 있어서 파워 컨버터 블록이 매우 중요한 블록으로 부각되고 있다. 본 논문에서는 휴대 기기를 위한 고성능 DC-DC buck 컨버터를 설계하였다. DC-DC buck 컨버터의 컨트롤러에는 전류를 이용한 컨트롤 방법을 사용하였다. 설계된 전류 방식 DC-DC buck 컨버터는 standard $0.18{\mu}m$ 공정을 통하여 칩으로 제작 되었고, 전체 칩의 크기는 $1.2mm^2$이다. 제작된 칩은 $1\sim1.5MHz$의 주파수에서 동작 하였고, 최대 400mA의 부하 전류를 구동할 수 있다. 또한 컨버터의 최대 변환 효율은 86%이다.

Power converters are becoming an essential block in modem mobile multimedia application. This paper presents a high performance DC-DC buck converter for mobile applications. Controller of DC-DC buck converter is designed by current-mode control method. An current-mode DC-DC converter is implemented in a standard $0.18{\mu}m$ CMOS process, and the overall die size was $1.2mm^2$. The peak efficiency was 86 % with a switching frequency of $1\sim1.5MHz$ and a maximum load current of 400mA.

키워드

참고문헌

  1. Nathan Andrews, "The global market for power supply and power management integrated circuits", Power Electronics Conference and Exposition, March 2002 Page(s):126 - 131 vol.1
  2. C. Y. Leung, P. K. T. Mok, K. N. Leung, and M. Chan, "An integrated CMOS current-sensing circuit for low-voltage current-mode buck regulator", IEEE Trans. Circuits Syst. II, vol. 52, no. 7, pp. 394394, Jul. 2005
  3. H. P. Forghani-zadeh, and G. A. Rincon-Mora, "An accurate, continuous, and lossless self-learning CMOS current-sensing scheme for inductor based DC-DC converters", IEEE J. of Solid-State Circuits, vol. 42, pp.665- 679, Mar. 2007 https://doi.org/10.1109/JSSC.2006.891721
  4. J. Chen, J. Su, H. Lin, C. Chang, Y. Lee, T. Chen, H.Wang, K. Chang, and P. Lin, "Integrated current sensing circuits suitable for step-down DC-DC converters", Electron. Lett., pp. 200201, Feb. 2004
  5. H. Deng, X. Duan, N. Sun, Y. Ma, A. Q. Huan, and D. Chen, "Monolithically integrated boost converter based on 0.5-$\mu$m CMOS process", IEEE Trans. on Power Electronics, vol. 20, pp.628-638, May 2005 https://doi.org/10.1109/TPEL.2005.846551
  6. A. Sltratakos, S. Sanders, and R. Broderson, "A low-voltage CMOS DC-DC converter for a portable battery-operated system", in IEEE Power Electronics Specialists Conference,1994, pp. 619-626
  7. P. T. Krein, Elements of Power Electronics, McGraw-Hill, 1998
  8. Jeongjin Roh, Donghun Heo, Kitae Kim, Hyunseok Nam, Youngkil Choi, Hyungdong Rho, "A 900nA quiescent current Buck converter with on-chip compensator", ITC-CSCC 2006, PP.413-416, July 2006
  9. R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics, 2nd ed. Boston, MA: Kluwer, 2000
  10. I. Pressman, Switching Power Supply Design, 2nd ed. New York: Mc- Graw-Hill, 1998
  11. M. Brown, Practical Switching Power Supply Design. San Diego, CA: Academic, 1990
  12. C. F. Lee and P. K. T. Mok, "A Monolithic current-mode CMOS DC-DC converter with on-chip current-sensing technique", IEEE J. Solid-State Circuits, vol. 39, no. 1, pp. 314, Jan. 2004
  13. P. E. Allen and D. R. Holberg, CMOS Analog Circuit Design. New York: Holt Rinehart and Winston, 1987