Differential Induction of Protein Expression and Benzophenanthridine Alkaloid Accumulation in Eschscholtzia californica Suspension Cultures by Methyl Jasmonate and Yeast Extract

  • Cho, Hwa-Young (Advanced Environmental Biotechnology Research Center, School of Environmental Science and Engineering, Department of Chemical Engineering, Pohang University of Science and Technology) ;
  • Rhee, Hong-Soon (Advanced Environmental Biotechnology Research Center, School of Environmental Science and Engineering, Department of Chemical Engineering, Pohang University of Science and Technology) ;
  • H. Yoon, Sung-Yong (Exelixis Plant Sciences) ;
  • Park, Jong-Moon (Advanced Environmental Biotechnology Research Center, School of Environmental Science and Engineering, Department of Chemical Engineering, Pohang University of Science and Technology)
  • Published : 2008.02.29

Abstract

Methyl jasmonate (MJ) and yeast extract (YE) induce protein expression and benzophenanthridine alkaloid accumulation in Eschscholtzia californica suspension cell cultures. One hundred ${\mu}M$ MJ primarily induced dihydrosanguinarine $(509.0{\pm}7.4mg/l)$ ; 0.2g/l YE induced sanguinarine $(146.8{\pm}3.8mg/l)$ and an unknown compound. These results occur because dihydrobenzophenanthridine oxidase (DHBO) is induced by YE and not by MJ. YE and chitin (CHI) had similar effects on sanguinarine production and DHBO expression. Differential induction of secondary metabolites was shown in E. californica suspension cultures and the expression of proteins confirmed the metabolite results. Furthermore, treatment by various oligosaccharides helped us to understand the elicitation effect of YE in signal transduction pathways.

Keywords

References

  1. Blechert, S., W. Brodschelm, H. Swen, L. Kammerer, T. M. Kutchan, M. J. Mueller, Z.-Q. Xia, and M. H. Zenk. 1995. The octadecanoic pathway: Signal molecules for the regulation of secondary pathways. Proc. Natl. Acad. Sci. USA 92: 4099-4105Blechert, S., W. Brodschelm, H. Swen, L. Kammerer, T. M. Kutchan, M. J. Mueller, Z.-Q. Xia, and M. H. Zenk. 1995. The octadecanoic pathway: Signal molecules for the regulation of secondary pathways. Proc. Natl. Acad. Sci. USA 92: 4099-4105
  2. Boller, T. 1995. Chemoperception of microbial signals in plant cells. Annu. Rev. Plant Physiol. Plant Mol. Biol. 46: 189-214 https://doi.org/10.1146/annurev.pp.46.060195.001201
  3. Bradford, M. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  4. Byun, S. Y. 2000. Re-elicitation with methyl jasmonate in Eschscholtzia californica cell suspension cultures. J. Microbiol. Biotechnol. 10: 107-110
  5. Byun, S. Y. and H. Pedersen. 1991. Elicitation and in situ recovery of alkaloids in suspension cultures of californica poppy. J. Microbiol. Biotechnol. 1: 220-226
  6. Chen, H. and F. Chen. 2000. Effect of yeast elicitor on the secondary metabolism of Ti-transformed Salvia miltiorrhiza cell suspension cultures. Plant Cell Rep. 19: 710-717 https://doi.org/10.1007/s002999900166
  7. Choi, K.-B., T. Morishige, N. Shitan, K. Yazaki, and F. Sato. 2002. Molecular cloning and characterization of coclaurine Nmethyltransferase from cultured cells of Coptis japonica. J. Biol. Chem. 277: 830-835 https://doi.org/10.1074/jbc.M106405200
  8. Collinge, M. A. and P. E. Brodelius. 1989. Dynamics of benzophenanthridine alkaloid production in suspension cultures of Eschscholtzia californica after treatment with a yeast elicitor. Phytochemistry 28: 1101-1104 https://doi.org/10.1016/0031-9422(89)80192-X
  9. Ebel, J., W. E. Schmidt, and R. Loyal. 1984. Phytoalexin synthesis in soybean cells: Elicitor induction of phenylalanine ammonia-lyase and chalcone synthase mRNAs and correlation with phytoalexin accumulation. Arch. Biochem. Biophys. 232: 240-248 https://doi.org/10.1016/0003-9861(84)90540-X
  10. Facchini, P. J., C. Penzes, A. G. Johnson and D. Bull. 1996. Molecular characterization of berberine bridge enzyme genes from opium poppy. Plant Physiol. 112: 1669-1677 https://doi.org/10.1104/pp.112.4.1669
  11. Farber, K., B. Schumann, O. Miersch, and W. Roos. 2003. Selective desensitization of jasmonate- and pH-dependent signaling in the induction of benzophenanthridine biosynthesis in cells of Eschscholzia californica. Phytochemistry 62: 491-500 https://doi.org/10.1016/S0031-9422(02)00562-9
  12. Farmer, E. E. and C. A. Ryan. 1990. Interplant communication: Airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proc. Natl. Acad. Sci. USA 87: 7713- 7716
  13. Farmer, E. E. and C. A. Ryan. 1992. Octadecanoid precursors of jasmonic acid activate the synthesis of wound-inducible proteinase inhibitors. Plant Cell 4: 129-134 https://doi.org/10.1105/tpc.4.2.129
  14. Frick, S. and T. M. Kutchan. 1999. Molecular cloning and functional expression of O-methyltransferases common to isoquinoline alkaloid and phenylpropanoid biosynthesis. Plant J. 17: 329-339 https://doi.org/10.1046/j.1365-313X.1999.00379.x
  15. Funk, C., K. Gugler, and P. Brodelius. 1987. Increased secondary product formation in plant cell suspension cultures after treatment with a yeast carbohydrate preparation (elicitor). Phytochemistry 26: 401-405 https://doi.org/10.1016/S0031-9422(00)81421-1
  16. Gamborg, O. L., R. A. Miller, and K. Ojima. 1968. Nutrient requirements of suspension cultures of soybean root cells. Exp. Cell Res. 50: 151-158 https://doi.org/10.1016/0014-4827(68)90403-5
  17. Hahn, M. G. and P. Albersheim. 1978. Host-pathogen interactions. XIV. Isolation and partial characterization of an elicitor from yeast extract. Plant Physiol. 62: 107-111 https://doi.org/10.1104/pp.62.1.107
  18. Haider, G., T. Schrader, M. FuBlein, S. Blechert, and T. M. Kutchan. 2000. Structure-activity relationships of synthetic analogs of jasmonic acid and coronatine on induction of benzophenanthridine alkaloid accumulation in Eschscholtzia californica cell cultures. Biol. Chem. 381: 741-748 https://doi.org/10.1515/BC.2000.094
  19. Hayashi, H., P. Huang, and K. Inoue. 2003. Up-regulation of soyasaponin biosynthesis by methyl jasmonate in cultured cells of Glycyrrhiza glabra. Plant Cell Physiol. 44: 404-411 https://doi.org/10.1093/pcp/pcg054
  20. Hefner, J., R. E. B. Ketchum, and R. Croteau. 1998. Cloning and functional expression of a cDNA encoding geranylgeranyl diphosphate synthase from Taxus canadensis and assessment of the role of this prenyltransferase in cells induced for Taxol production. Arch. Biochem. Biophys. 360: 62-74 https://doi.org/10.1006/abbi.1998.0926
  21. Ignatov, A., W. G. Clark, S. D. Cline, M. Psenak, R. J. Krueger, and C. J. Coscia. 1996. Elicitation of dihydrobenzophenanthridine oxidase in Sanguinaria canadensis cell cultures. Phytochemistry 43: 1141-1144 https://doi.org/10.1016/S0031-9422(96)00540-7
  22. Ignatov, A., M. C. Neuman, R. Barg, R. J. Krueger, and C. J. Coscia. 1997. Immunoblot analyses of the elicited Sanguinaria canadensis enzyme, dihydrobenzophenanthridine oxidase: Evidence for resolution from a polyphenol oxidase isoenzyme. Arch. Biochem. Biophys. 347: 208-212 https://doi.org/10.1006/abbi.1997.0336
  23. Lamboursain, L. and M. Jolicoeur. 2005. Critical influence of Eschscholtzia californica cells nutritional state on secondary metabolite production. Biotechnol. Bioeng. 91: 827-837 https://doi.org/10.1002/bit.20553
  24. Lee-Parsons, C. W. T., S. Ertürk, and J. Tengtrakool. 2004. Enhancement of ajmalicine production in Catharanthus roseus cell cultures with methyl jasmonate is dependent on timing and dosage of elicitation. Biotechnol. Lett. 26: 1595-1599 https://doi.org/10.1023/B:BILE.0000045825.37395.94
  25. Mandujano-Chavez, A., M. A. Schoenbeck, L. F. Ralston, E. Lozoya-Gloria, and J. Chappell. 2000. Differential induction of sesquiterpene metabolism in tobacco cell suspension cultures by methyl jasmonate and fungal elicitor. Arch. Biochem. Biophys. 381: 285-294 https://doi.org/10.1006/abbi.2000.1961
  26. Morishige, T., T. Tsujita, Y. Yamada, and F. Sato. 2000. Molecular characterization of the S-adenosyl-L-methionine: 3'- hydroxy-N-methylcoclaurine 4'-O-methyltransferase involved in isoquinoline alkaloid biosynthesis in Coptis japonica. J. Biol. Chem. 275: 23398-23405 https://doi.org/10.1074/jbc.M002439200
  27. Nahalka, J., J. Nahálková, P. Gemeiner, and P. Blanarik. 1998. Elicitation of plumbagin by chitin and its release into the medium in Drosophyllum lusitanicum Link. suspension cultures. Biotechnol. Lett. 20: 841-845 https://doi.org/10.1023/A:1005307408135
  28. Park, J.-J., S.-Y. Yoon, H. Y. Cho, S. Y. Son, H. S. Rhee, and J. M. Park. 2006. Patterns of protein expression upon adding sugar and elicitor to the cell culture of Eschscholtzia californica. Plant Cell Tiss. Org. Cult. 86: 257-269 https://doi.org/10.1007/s11240-006-9115-1
  29. Pauli, H. H. and T. M. Kutchan. 1998. Molecular cloning and functional heterologous expression of two alleles encoding (S)-N-methylcoclaurine 3'-hydroxylase (CYP80B1), a new methyl jasmonate-inducible cytochrome P-450-dependent monooxygenase of benzylisoquinoline alkaloid biosynthesis. Plant J. 13: 793-801 https://doi.org/10.1046/j.1365-313X.1998.00085.x
  30. Peltonen, S., L. Mannonen, and R. Karjalainen. 1997. Elicitorinduced changes of phenylalanine ammonia-lyase activity in barley cell suspension cultures. Plant Cell Tiss. Org. Cult. 50: 185-193 https://doi.org/10.1023/A:1005908732706
  31. Reymond, P. and E. E. Farmer. 1998. Jasmonate and salicylate as global signals for defense gene expression. Curr. Opin. Plant Biol. 1: 404-411 https://doi.org/10.1016/S1369-5266(98)80264-1
  32. Roos, W., B. Dordschbal, J. Steighardt, M. Hieke, D. Weiss, and G. Saalbach. 1999. A redox-dependent, G-protein-coupled phospholipase A of the plasma membrane is involved in the elicitation of alkaloid biosynthesis in Eschscholtzia californica. Biochem. Biophys. Acta 1448: 390-402 https://doi.org/10.1016/S0167-4889(98)00148-7
  33. Samanani, N. and P. J. Facchini. 2001. Isolation and partial characterization of norcoclaurine synthase, the first committed step in benzylisoquinoline alkaloid biosynthesis, from opium poppy. Planta 213: 898-906 https://doi.org/10.1007/s004250100581
  34. Singh, G., J. Gavrieli, J. S. Oakey, and W. R. Curtis. 1998. Interaction of methyl jasmonate, wounding and fungal elicitation during sesquiterpene induction in Hyoscyamus muticus in root cultures. Plant Cell Rep. 17: 391-395 https://doi.org/10.1007/s002990050412
  35. Sudha, G. and G. A. Ravishankar. 2003. Elicitation of anthocyanin production in callus cultures of Daucus carota and the involvement of methyl jasmonate and salicylic acid. Acta Physiol. Plant. 25: 249-256 https://doi.org/10.1007/s11738-003-0005-4
  36. Wang, Y.-D., Y.-J. Yuan, and J.-C. Wu. 2004. Induction studies of methyl jasmonate and salicylic acid on taxane production in suspension cultures of Taxus chinensis var. mairei. Biochem. Eng. J. 19: 259-265 https://doi.org/10.1016/j.bej.2004.02.006
  37. Weiler, E. W., T. M. Kutchan, T. Gorba, W. Brodschelm, U. Niesel, and F. Bublitz. 1994. The Pseudomonas phytotoxin coronatine mimics octadecanoid signalling molecules of higher plants. FEBS Lett. 345: 9-13 https://doi.org/10.1016/0014-5793(94)00411-0
  38. Zhao, J., L. C. Davis, and R. Verpoorte. 2005. Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol. Adv. 23: 283-333 https://doi.org/10.1016/j.biotechadv.2005.01.003