Proteomic Analysis of Fructophilic Properties of Osmotolerant Candida magnoliae

  • Yu, Ji-Hee (Department of Agricultural Biotechnology and the BIO-MAX Institute, Seoul National University) ;
  • Lee, Dae-Hee (Department of Agricultural Biotechnology and the BIO-MAX Institute, Seoul National University) ;
  • Park, Yong-Cheol (Center for Agricultural Biomaterials, Seoul National University) ;
  • Lee, Mi-Gi (Department of Agricultural Biotechnology and the BIO-MAX Institute, Seoul National University) ;
  • Kim, Dae-Ok (Department of Food Science and Technology, Kyung Hee University) ;
  • Ryu, Yeon-Woo (Department of Molecular Science and Technology, Ajou University) ;
  • Seo, Jin-Ho (Department of Agricultural Biotechnology and the BIO-MAX Institute, Seoul National University)
  • Published : 2008.02.29

Abstract

Candida magnoliae, an osmotolerant and erythritol producing yeast, prefers D-fructose to D-glucose as carbon sources. For the investigation of the fructophilic characteristics with respect to sugar transportation, a sequential extraction method using various detergents and ultracentrifugation was developed to isolate cellular membrane proteins in C. magnoliae. Immunoblot analysis with the Pma1 antibody and two-dimensional electrophoresis analysis coupled with MS showed that the fraction II was enriched with membrane proteins. Eighteen proteins out of 36 spots were identified as membrane or membrane-associated proteins involved in sugar uptake, stress response, carbon metabolism, and so on. Among them, three proteins were significantly upregulated under the fructose supplying conditions. The hexose transporter was highly homologous to Ght6p in Schizosaccharomyces pombe, which was known as a predominant transporter for the fructose uptake of S. pombe because it exhibited higher affinity to D-fructose than D-glucose. The physicochemical properties of the ATP-binding cassette transporter and inorganic transporter explained their direct or indirect associations with the fructophilic behavior of C. magnoliae. The identification and characterization of membrane proteins involved in sugar uptake might contribute to the elucidation of the selective utilization of fructose to glucose by C. magnoliae at a molecular level.

Keywords

References

  1. Bagnat, M., S. Keranen, A. Shevchenko, A. Shevchenko, and K. Simons. 2000. Lipid rafts function in biosynthetic delivery of proteins to the cell surface in yeast. Proc. Natl. Acad. Sci. USA 97: 3254-3259
  2. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  3. Brugiere, S., S. Kowalski, M. Ferro, D. Seigneurin-Berny, S. Miras, D. Salvi, S. Ravanel, P. d'Herin, J. Garin, J. Bourguignon, J. Joyard, and N. Rolland. 2004. The hydrophobic proteome of mitochondrial membranes from Arabidopsis cell suspensions. Phytochemistry 65: 1693-1707 https://doi.org/10.1016/j.phytochem.2004.03.028
  4. Cha, K. H., M. D. Kim, T. H. Lee, H. K. Lim, K. H. Jung, and J. H. Seo. 2006. Coexpression of protein disulfide isomerase (PDI) enhances production of kringle fragment of human apolipoprotein(a) in recombinant Saccharomyces cerevisiae. J. Microbiol. Biotechnol. 19: 308-311
  5. Choi, J. H., M. D. Kim, J. H. Seo, and J. W. Ahn. 2003. Effects of fermentation conditions on production of erythritol by Candida magnoliae. Kor. J. Food Sci. Technol. 35: 708-712
  6. Ciani, M., L. Ferraro, and F. Fatichenti. 2000. Influence of glycerol production on the aerobic and anaerobic growth of the wine yeast Candida stellata. Enzyme Microb. Technol. 27: 698-703 https://doi.org/10.1016/S0141-0229(00)00269-6
  7. Dreger, M. 2003. Proteome analysis at the level of subcellular structures. Eur. J. Biochem. 270: 589-599 https://doi.org/10.1046/j.1432-1033.2003.03426.x
  8. Gevaert, K., J. Van Damme, M. Goethals, G. R. Thomas, B. Hoorelbeke, H. Demol, L. Martens, M. Puype, A. Staes, and J. Vandekerckhove. 2002. Chromatographic isolation of methionine-containing peptides for gel-free proteome analysis: Identification of more than 800 Escherichia coli proteins. Mol. Cell. Proteomics 1: 896-903 https://doi.org/10.1074/mcp.M200061-MCP200
  9. Gharahdaghi, F., C. R. Weinberg, D. A. Meagher, B. S. Imai, and S. M. Mische. 1999. Mass spectrometric identification of proteins from silver-stained polyacrylamide gel: A method for the removal of silver ions to enhance sensitivity. Electrophoresis 20: 601-605 https://doi.org/10.1002/(SICI)1522-2683(19990301)20:3<601::AID-ELPS601>3.0.CO;2-6
  10. Heiland, S., N. Radovanovic, M. Hofer, J. Winderickx, and H. Lichtenberg. 2000. Multiple hexose transporters of Schizosaccharomyces pombe. J. Bacteriol. 182: 2153-2162 https://doi.org/10.1128/JB.182.8.2153-2162.2000
  11. Hiele, M., Y. Ghoos, P. Rutgeerts, and G. Vantrappen. 1993. Metabolism of erythritol in humans: Comparison with glucose and lactitol. Br. J. Nutr. 69: 169-176 https://doi.org/10.1079/BJN19930019
  12. Kang, H. Y., Y. S. Kim, J. H. Seo, and Y. W. Ryu. 2006. Flocculation of an isolated flocculent yeast, Candida tropicalis HY200, and its application for efficient xylitol production using repeated-batch cultivation. J. Microbiol. Biotechnol. 16: 1874- 1881
  13. Kim, S. Y., S. S. Park, Y. J. Jeon, and J. H. Seo. 1996. Analysis of fermentation characteristics for production of erythritol by Candida sp. Kor. J. Food Sci. Technol. 28: 935-939
  14. Koh, E. S., K. H. Moon, K. C. Han, Y. W. Ryu, and J. H. Seo. 2000. Optimization of culture conditions and nitrogen sources for production of erythritol by Candida magnoliae. Kor. J. Appl. Microbiol. Biotechnol. 28: 349-354
  15. Lee, D. Y., Y. C. Park, H. J. Kim, Y. W. Ryu, and J. H. Seo. 2003. Proteomic analysis of Candida magnoliae strains by two-dimensional gel electrophoresis and mass spectrometry. Proteomics 3: 2330-2338 https://doi.org/10.1002/pmic.200300568
  16. Lee, K. H., J. H. Seo, and Y. W. Ryu. 2002. Fermentation characteristics of salt-tolerant mutant, Candida magnoliae M26, for the production of erythritol. Kor. J. Food Sci. Technol. 17: 509-514
  17. Lee, K. W., E. J. Song, J. H. Kim, H. C. Lee, K. K. Liou, J. K. Sohng, and B. G. Kim. 2007. Enhanced proteomic analysis of Streptomyces peucetius cytosolic protein using optimized protein solubilization protocol. J. Microbiol. Biotechnol. 17: 89-95
  18. Moslavac, S., R. Bredemeier, O. Mirus, B. Granvogl, L. A. Eichacker, and E. Schleiff. 2005. Proteomic analysis of the outer membrane of Anabaena sp. strain PCC 7120. J. Proteome Res. 4: 1330-1338 https://doi.org/10.1021/pr050044c
  19. Park, J. M., N. S. Han, and T. J. Kim. 2007. Rapid detection and isolation of known and putative $\alpha-L-arabinofuranosidase$ genes using degeneratate PCR primers. J. Microbiol. Biotechnol. 17: 481-489
  20. Park, Y. C., D. Y. Lee, D. H. Lee, H. J. Kim, Y. W. Ryu, and J. H. Seo. 2005. Proteomics and physiology of erythritolproducing strains. J. Chromatogr. B 815: 251-260 https://doi.org/10.1016/j.jchromb.2004.10.065
  21. Peng, X., C. Xu, H. Ren, X. Lin, L. Wu, and S. Wang. 2005. Proteomic analysis of the sarcosine-insoluble outer membrane fraction of Pseudomonas aeruginosa responding to ampicillin, kanamycin, and tetracycline resistance. J. Proteome Res. 4: 2257-2265 https://doi.org/10.1021/pr050159g
  22. Pina, C., P. Goncalves, C. Prista, and M. C. Loureiro-Dias. 2004. Ffz1, a new transporter specific for fructose from Zygosaccharomyces bailii. Microbiology 150: 2429-2433 https://doi.org/10.1099/mic.0.26979-0
  23. Scheurer, S. B., C. Roesli, D. Neri, and G. Elia. 2005. A comparison of different biotinylation reagents, tryptic digestion procedures, and mass spectrometric techniques for 2-D peptide mapping of membrane proteins. Proteomics 5: 3035-3039 https://doi.org/10.1002/pmic.200402069
  24. Shevchenko, A., O. N. Jensen, A. V. Podtelejnikov, F. Sagliocco, M. Wilm, O. Vorm, P. Mortensen, A. Shevchenko, H. Boucherie, and M. Mann. 1996. Linking genome and proteome by mass spectrometry: Large-scale identification of yeast proteins from two-dimensional gels. Proc. Natl. Acad. Sci. USA 93: 14440- 14445
  25. Sousa-Dias, S., T. Goncalves, J. S. Leyva, J. M. Peinado, and M. C. Loureiro-Dias. 1996. Kinetics and regulation of fructose and glucose transport systems are responsible for fructophily in Zygosaccharomyces bailii. Microbiology 142: 1733-1738 https://doi.org/10.1099/13500872-142-7-1733
  26. Yang, S. W., J. B. Park, N. S. Han, Y. W. Ryu, and J. H. Seo. 1999. Production of erythritol from glucose by an osmophilic mutant of Candida magnoliae. Biotechnol. Lett. 21: 887-890 https://doi.org/10.1023/A:1005566420982
  27. Yu, J. H., D. H. Lee, Y. J. Oh, K. C. Han, Y. W. Ryu, and J. H. Seo. 2006. Selective utilization of fructose to glucose by Candida magnoliae, an erythritol producer. Appl. Biochem. Biotechnol. 131: 870-879 https://doi.org/10.1385/ABAB:131:1:870
  28. Yuan, J., L. Zhu, X. Liu, T. Li, Y. Zhang, T. Ying, B. Wang, J. Wang, H. Dong, E. Feng, Q. Li, J. Wang, H. Wang, K. Wei, X. Zhang, C. Huang, P. Huang, L. Huang, M. Zeng, and H. Wang. 2006. A proteome reference map and proteomic analysis of Bifidobacterium longum NCC2705. Mol. Cell. Proteomics 5: 1105-1118 https://doi.org/10.1074/mcp.M500410-MCP200
  29. Zhao, Y., W. Zhang, Y. Kho, and Y. Zhao. 2004. Proteomic analysis of integral plasma membrane proteins. Anal. Chem. 76: 1817-1823 https://doi.org/10.1021/ac0354037