Relationship Among Alkali Digestive Value, Amylopectin Fine Structure and Physical Properties of Cooked Rice

쌀의 알칼리붕괴도와 아밀로펙틴 미세구조 및 호화 물성과의 관계

  • Published : 2008.09.30

Abstract

This study was performed to effect of chain length distribution of amylopectin on gelatinization physical properties of cooked rice grains which were analyzed by alkali digestive value (ADV) in six rice cultivars. Those rice cultivars were Hwangumnuribyeo, Ilpumbyeo, Sangjubyeo, Taebongbyeo, Nampyungbyeo, and Dasanbyeo. The ADV values were evenly distributed from 7.0 (Hwangumnuribyeo) to 5.0 (Dasanbyeo). A similar chain length distribution of amylopectin was found in rice cultivars, indicating that DP12 had the highest distribution. Rice cultivars with high ADV value showed higher portion of short chain distribution upto DP15. The surface hardness of cooked rice increased consecutively to Dasanbyeo, Ilpumbyeo, and Hwangumnuribyeo. Among japonica type rice cultivars, the highest overall hardness was observed in Dasanbyeo followed by Hwangumnuribyeo and Ilpumbyeo. Correlation between hardness of rice graim and chain length distribution of amylopectin had the similar inclination to surface hardness of rice grains and overall hardness.

본 연구는 알카리붕괴도가 다른 황금누리벼, 일품벼, 상주벼, 태봉벼, 남평벼, 다산벼의 일반미 6품종의 아밀로펙틴 구조와 밥의 호화물성을 조사 하여 상관관계를 조사한 결과이다. 1. 6품종 쌀의 알칼리붕괴도는 황금누리벼의 7.0부터 다산벼의 5.0까지 고르게 분포하였다. 아밀로펙틴 구조 분석결과 시료는 모두 중합도 12에서 최고 분포를 갖는 등 비슷한 유형을 나타냈으며 알칼리붕괴도가 높은 품종은 중합도 15까지 짧은 사슬의 함량이 다른 품종에 비해 많이 함유하고 있는 것으로 나타났다. 2. 호화된 밥의 표면 경도는 다산벼, 일품벼, 황금누리벼의 순으로 컸으며 끈기는 일품벼가 가장 높게 나타났다. 밥의 전체 경도는 다산벼가 가장 높은 것으로 나타났고 다음으로 황금누리벼, 일품벼의 순으로 경도가 높은 것으로 조사되었다.

Keywords

References

  1. 김광호, 오세만. 1992. 쌀 알칼리붕괴반응의 품종간 변이와 호화온도 및 수분흡수율과의 관계. 한국작물학회지. 37(1) 28-36
  2. 농업과학기술 연구조사분석기준. 2003. 11. 농촌진흥청. 288- 290
  3. 송진, 김선림. 2004. 밥의 텍스쳐 및 색이 측정. 작물의 유용성분 분석 및 평가.사단법인 한국작물학회,작물과학원. 277-283
  4. 장경아,신명곤,홍성희,민봉기,김광옥.1996.취반미의 관능적 특성에 따른 쌀의 분류 및 쌀전분의 이화학적 특성. 한국식품과학회지. 28(1). 44-52
  5. A.O.A.C. 1995. Official methods of analysis, 16th. ed., Associatin ofofficial analytical chemists, Washington, D.C
  6. Biliaderis, C. G., Maurice T. J., and Vose J. R.. 1980. Starch gelatinization phenomena studied by differential scanning calorimetry. Journal of food science. 45. 1669-1680 https://doi.org/10.1111/j.1365-2621.1980.tb07586.x
  7. Champagne Elaine T., Lyon Brenda G., Min Bong Kee, Vinyard Bryan T., Bett Karen L., Barton II Franklin E., Webb Bill D., McClung Anna M., Moldenhauer Karen A., Linscombe Steve, McKenzie Kent S., and Kohlwey David E.. Effects of postharvest processing on texture profile analysis of cooked rice. Cereal Chemistry. 75(2). 181-186
  8. Fredriksson, H., Silverio J., Andersson R., Eliasson A. C., and Aman P. 1998. The influence of amylose and amylopectin characteristics on gelatinization and retrogradation properties of different starches. Carbohydrate Polymers 35. 119-134 https://doi.org/10.1016/S0144-8617(97)00247-6
  9. Hanashiro Isao, Abe Jun-ichi, and Hizukuri Susumu. 1996. A periodic distribution of the chain length of amylopectin as revealed by high-performance anion - exchange chromatography. Carbohydrate Research. 283. 151-159 https://doi.org/10.1016/0008-6215(95)00408-4
  10. Hiroyuki Mizukami and Yasuhito Takeda. 2000. Chewing Properties of Cooked Rice from New Characteristic Rice Cultivars and Their Relation to Starch Molecular Structures. J. Appl Glycosci. 47(1). 61-65 https://doi.org/10.5458/jag.47.61
  11. Okadome Hiroshi, Toyoshima Hidechika, Suto Mitsuru, Ando Ikuo, Numaguchi Kenji, Horisue Noboru, and Ohtsubo Ken'ichi. 1998. Palatability evaluation for Japonica rice grains based on multiple physical measurements of individual cooked rice grain. Nippon Shoukuhin Kagaku Kogaku Kaishi (J. Jpn. Soc. Food Sci. Technol.) 45(7). 398-407 https://doi.org/10.3136/nskkk.45.398
  12. Ong, M. H. and Blanshard J. M. V. 1995. Texture determinants of cooked, parboiled rice. II: Physicochemical properties and leaching behaviour of rice. Journal of Cereal Science. 21. 261-269 https://doi.org/10.1006/jcrs.1995.0029
  13. Ramesh, M., Ali S. Zakiuddin, and Bhattacharya K. R. 1999. Structure of rice starch and its relation to cooked-rice texture. Carbohydrate Polymers. 38. 337-347 https://doi.org/10.1016/S0144-8617(98)00125-8
  14. Juliano, B. O. 1971. A simplified assay for milled-rice amylose. Cereal Science. Today 16. 10. 334
  15. Srichuwong Sathaporn, Sunarti Titi Candra, Mishima Takashi, Isono Naoto, and Hisamatsu Makoto. 2005. Starches from different botanical sources I: Contribution of amylopectin fine structure to thermal properties and enzyme digestibility. Carbohydrate Polymers. 60. 529-538 https://doi.org/10.1016/j.carbpol.2005.03.004
  16. Srichuwong Sathaporn, Sunarti Titi Candra, Mishima Takashi, Isono Naoto, and Hisamatsu Makoto. 2005. Starches from different botanical sources II: Contribution of starch structure to swelling and pasting properties. Carbohydrate polymers. 62. 25-34 https://doi.org/10.1016/j.carbpol.2005.07.003
  17. Suzuki Keitaro, Nakamura Sumiko, Satoh Hikaru, and Ohtsubo Ken'ichi. 2006. Relation between Chain-length Distributions of Waxy Rice Amylopectins and Physical properties of rice grains. Journal of Applied Glycoscience. 53. 227-232 https://doi.org/10.5458/jag.53.227
  18. Takeda Yasuhito and Hanashiro Isao. 2003. Examination of the structure of amylose and amylopectin by fluorescent labeling of the reducing terminal. Journal of Applied Glycoscience. 50. 163-166 https://doi.org/10.5458/jag.50.163
  19. Xie Lihong, Chen Neng, Duan Binwu, Zhu Zhiwei, and Liao Xiyuan. 2007. Impact of proteins on pasitng and cooking properties of waxy and non-waxy rice. Journal of Cereal Science