DOI QR코드

DOI QR Code

Assessment of MODIS Leaf Area Index (LAI) Influence on the Penman-Monteith Evapotranspiration of SLURP Model

MODIS 위성영상으로부터 추출된 엽면적지수(LAI)가 SLURP 모형의 Penman-Monteith 증발산량에 미치는 영향 평가

  • 하림 (건국대학교 사회환경시스템공학과) ;
  • 신형진 (건국대학교 사회환경시스템공학과) ;
  • 박근애 (건국대학교 사회환경시스템공학과) ;
  • 김성준 (건국대학교 사회환경시스템공학과)
  • Received : 2008.05.07
  • Accepted : 2008.07.30
  • Published : 2008.09.30

Abstract

Evapotranspiration (ET) is an important state variable while simulating daily streamflow in hydrological models. In the estimation of ET, for example, when using FAO Penman Monteith equation, the LAI (Leaf Area Index) value reflecting the conditions of vegetation generally affects considerably. Recently in evaluating the vegetation condition as a fixed quantity, the remotely sensed LAI from MODIS satellite data is available, and the time series values of spatial LAI coupled with land use classes are utilized for ET evaluation. Four years (2001-2004) of MODIS LAI was prepared for the evaluation of Penman Monteith ET in the continuous hydrological model, SLURP (Semi-distributed Land Use-based Runoff Processes). The model was applied for simulating the dam inflow of Chungju watershed ($6661.3km^2$) located in the upstream of Han river basin. For four years (2001-2004) dam inflow data and meteorological data, the model was calibrated and verified using MODIS LAI data. The average Nash-Sutcliffe model efficiency was 0.66. The 4 years watershed average Penman Monteith ETs of deciduous, coniferous, and mixed forest were 639.1, 422.4, and 631.6 mm for average MODIS LAI values of 3.64, 3.50, and 3.63 respectively.

수문 모형을 이용한 일 유출모의에 있어 증발산량은 중요한 변수로 명시되고 있다. 증발산량 추정에 있어서는 예를 들어, FAO Penman Monteith 공식을 이용할 경우 식생의 상태를 잘 반영하는 LAI(엽면적지수) 같은 인자는 상당한 영향을 미친다. 최근에는 고정된 양으로 식생 상태를 추정하는 데 있어, 원격탐사 기법을 이용한 MODIS 위성영상 자료로부터 추정된 LAI를 이용하고 있으며, 시계열 LAI 공간자료는 토지피복도와 함께 증발산량 추정을 위해 활용된다. 본 연구에서는 한강 상류부에 위치한 충주댐 유역($6661.3km^2$)의 댐 유입량을 모의하기 위해 SLURP 수문 모형을 적용하였으며, FAO Penman Monteith 공식을 통한 증발산량 추정에 식생인자가 미치는 영향을 분석하기 위해 4년(2001년-2004년) 동안의 MODIS LAI 자료를 구축하였다. 4년 동안의 9개 기상관측소 지점 기상자료 및 댐 유입량 자료와 MODIS LAI 자료를 기반으로 모델 보정(2001년, 2003년) 및 검증(2002년, 2004년)을 실시 한 결과, 평균 Nash-Sutcliffe 모델 효율 계수는 0.66이었다. 유역의 활엽수림, 침엽수림 그리고 혼효림에서의 4년 평균 MODIS LAI가 각각 3.64, 3.50, 그리고 3.63이었으며, 이에 따른 Penman Monteith ET는 639.1, 422.4, 그리고 631.6 mm로 모의되었다.

Keywords

References

  1. 국립산림과학원(2007) 극다중분광 영상자료의 산림정보해석 및 활용기법 개발, 국립산림과학원, pp. 53-62
  2. 권형중, 신사철, 김성준(2005) NOAA/AVHRR 위성영상을 이용한 기후학적 물수지 분석. 한국농공학회지, 한국농공학회, Vol. 47, No. 1, pp. 3-9 https://doi.org/10.5389/KSAE.2005.47.1.003
  3. 김병식(2003) SLURP 모형을 이용한 하천 유출량 모의. 석사학위논문, 인하대학교
  4. 김병식, 김경탁, 박정술, 김형수(2006) 준 분포형 수문모형에서의 원격탐사자료의 적용 및 평가, 한국지리정보학회지, 한국지리정보학회, 제9권, 제2호, pp. 144-158
  5. 김주훈, 김경탁(2005) LAI를 고려한 잠재증발산량 추정. 한국지리정보학회지, 한국지리정보학회, 제8권, 제4호, pp. 1-13
  6. 김지연(2004) Landsat 위성영상에서 산출한 NDVI와 현장자료를 이용한 MODIS LAI 평가. 석사학위논문, 서울대학교
  7. 박종화, 전택기, 나상일, 박민서(2005) NOAA AVHRR 데이터를 이용한 한반도의 순별 NDVI와 LAI 특성. 2005년도 학술발표논문집, 한국농공학회, pp. 649-654
  8. 신사철, 택본정수, 김치홍(1995) NOAA-AVHRR data를 이용한 증발산량추정. 한국수자원학회지, 한국수자원학회, 제28권 제1호, pp. 71-80
  9. 신사철, 황만하, 고익환, 이상진(2006) 식생 및 기온정보를 조합한 증발산량 산정을 위한 간편법 제안. 한국수자원학회지, 한국수자원학회, Vol. 38, No. 4, pp. 363-372 https://doi.org/10.3741/JKWRA.2006.39.4.363
  10. 유진웅(2003) SEBAL 모형을 이용한 증발산량의 추정. 석사학위논문, 서울대학교
  11. 임혁진, 권형중, 장철희, 김성준(2004) SLURP 모형을 이용한 유출수문분석-소양강댐 유역을 대상으로-. 한국수자원학회지, 한국수자원학회, Vol. 37, No. 8, pp. 631-641
  12. 장기창(2005) 산림지역 증발산량 추정을 위한 원격탐사 엽면적지수 비교. 석사학위논문, 인하대학교
  13. 채효석, 김성준, 정관수(1999) 격자기반의 일 증발산량 추정모형 개발. 한국수자원학회지, 한국수자원학회, Vol. 32, No. 6, pp. 721-730
  14. 채효석, 송영수, 박재영(2000) Landsat TM 자료를 이용한 광역 증발산량 추정. 한국수자원학회지, 한국수자원학회, Vol. 33, No. 4, pp. 471-482
  15. 하경자, 오현미, 김기영(2001) Inter-Annual and Intra-Annual Variabilities of NDVI, LAI and Ts Estimated by AVHRR in Korea. Korean Journal of Remote Sensing, Vol. 17, No. 2, pp. 111-119
  16. Abbott, M.B., Bathurst, J.C., Cunge, J.A., O'Connell, P.E., and Rasmussen, J. (1986a) An introduction to the european hydrological system - systeme hydrologique europeen 1: History and philosophy of a physically-based, distributed modelling system. J. Hydrol., Vol. 87, pp. 45-59 https://doi.org/10.1016/0022-1694(86)90114-9
  17. Abbott, M.B., Bathurst, J.C., Cunge, J.A., O'Connell, P.E., and Rasmussen, J. (1986b) An introduction to the european hydrological system - systeme hydrologique europeen 2: Structure of a physically-based, distributed modelling system, J. Hydrol., Vol. 87, pp. 61-77 https://doi.org/10.1016/0022-1694(86)90115-0
  18. Asrar, G., Kanemasu, E.T., and Yoshida, M. (1985) Estimates of leaf area index from spectral reflectance of wheat under different cultural practices and solar angle. Remote Sens, Environ, Vol. 17, pp. 1-11 https://doi.org/10.1016/0034-4257(85)90108-7
  19. Band, L.E., Patterson, P., Nemani, R., and Running, S.W. (1993) Forest ecosystem processes at the watershed scale: incorporating hillslope hydrology. Agricultural and Forest Meteorology, Vol. 63, pp. 93-126 https://doi.org/10.1016/0168-1923(93)90024-C
  20. Bastiaanssen, W.G.M., Menenti, M., Feddes, R.A., and Holtslag, A.A.M. (1998) A remote sensing surface energy balance algorithm for land (SEBAL): 1. Formulation. J. Hydrology 212-213, pp. 198-212 https://doi.org/10.1016/S0022-1694(98)00253-4
  21. Beven, K., Calver, A., and Morris, E.M. (1987) The Institute of Hydrology distributed model (IHDM), Institute of Hydrology Report, 97, Wallingford, U.K.
  22. Duan, Q., Sorooshian, S.S., and Gupta, V.K. (1994) Optimal use of the SCE-UA global optimization method for calibrating watershed models. J. of Hydr, Vol. 158, pp. 265-284 https://doi.org/10.1016/0022-1694(94)90057-4
  23. Franklin, S.E., Lavigne, M.B., Deuling, M.J., Wulder, M.A., and Hunt, E.R. (1997) Estimation of forest leaf area index using remote sensing and GIS data for modelling net primary production. Int. J. Remote Sensing, Vol. 18, No. 16, pp. 3459-3471 https://doi.org/10.1080/014311697216973
  24. Gusev, Ye. M. and Nasonova, O.N. (1998) The land surface parameterization scheme SWAP: Description and partial validation. Global Planet. Change, Vol. 19, pp. 63-86 https://doi.org/10.1016/S0921-8181(98)00042-3
  25. Habets, F., Noilhan, J., Golaz, C., Goutorbe, J.P., Lacarrere, P., Leblois, E., Ledoux, E., Martin, E., Ottle, C., and Vidal-Madjar, D. (1999) The ISBA surface scheme in a macroscale hydrological model applied to the Hapex-Mobilhy area. Part I: model and database. Journal of Hydrology, Vol. 217, pp. 75-96 https://doi.org/10.1016/S0022-1694(99)00019-0
  26. Hong, S.Y., Kenneth, A.S., Newell, R. K., Clyde, W.F., Harlan, L.P., and William, J.W. (2004) Comparison of remote sensing and crop growth models for estimating within-Field LAI Variability. Korean Journal of Remote Sensing, Vo1. 20, No. 1, pp. 175-188
  27. Immerzeel, W.W., Gaur, A., and Zwart, S.J. (2008) Integrating remote sensing and a process-based hydrological model to evaluate water use and productivity in a south Indian catchment. Agric. Water Manage, Vol. 95, No. 1, pp. 11-24 https://doi.org/10.1016/j.agwat.2007.08.006
  28. Kite, G. (1995) The SLURP model. In: Singh, V., (Ed.), Computer Models of Watershed Hydrology, Water Resources Publications: Highlands Ranch, CO. pp. 521-562
  29. Kite, G.W., and Pietroniro, A. (1996) Remote sensing applications in hydrological modelling. Hydrol. Sci. J, Vol. 41, No. 4, pp. 563-592 https://doi.org/10.1080/02626669609491526
  30. Kite, G. (2000) Using a basin-scale hydrological model to estimate crop transpiration and soil evaporation. Journal of Hydrology, Vol. 229, pp. 59-69 https://doi.org/10.1016/S0022-1694(99)00199-7
  31. Kite, G. (2002) MANUAL FOR THE SLURP HYDROLOGICAL MODEL Version 12.2., http://www.hydrologic-solutions.com
  32. Liang, X., Lettenmaier, D.P., Wood, E.F., and Burges, S.J. (1994) A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J. Geophys. Res., Vol. 99, No. D7, pp. 14,415-14,428
  33. Myneni, R.B. and Williams, D.L. (1994) On the relationship between FAPAR and NDVI. Remote Sensing of Environment, Vol. 49, No. 3, pp. 200-211 https://doi.org/10.1016/0034-4257(94)90016-7
  34. Nash, J.E. and Sutcliffe, J.V. (1970) River flow forecasting through conceptual models; Part 1 - A discussion of principles. J. of Hydr, Vol. 10, No. 3, pp. 282-290 https://doi.org/10.1016/0022-1694(70)90255-6
  35. Nemani, R. and Running, S.W. (1989) Testing a theoretical climatesoil- leaf area hydrologic equilibrium of forests using satellite data and ecosystem simulation. Agric Forest Meteorolo, Vol. 44, pp. 245-260 https://doi.org/10.1016/0168-1923(89)90020-8
  36. Pierce, L.L., Walker, J., Dowing, T., Mcvicar, T., Hatton, T., Running, S., and Coughlan, J. (1993) Ecohydrological changes in Murray-Darling basin. III. A Simulation of regional hydrological changes. J. Appl. Ecol, Vol. 30, pp. 283-294 https://doi.org/10.2307/2404630
  37. Quan, W., Samuel, A., John, T., and Andre, G. (2005) On the relationship of NDVI with leaf area index in a deciduous forest site. Remote Sensing of Environment, Vol. 94, pp. 244-255 https://doi.org/10.1016/j.rse.2004.10.006
  38. Rawls, W.J., Brakensiek, D.L., and Saxton, K.E. (1982) Estimation of soil water properties. Trans. of the ASAE, 25, pp. 1316-1320, 1328 https://doi.org/10.13031/2013.33720
  39. Sellers, P.J., Tucker, P.J., Collatz, G.J., Los, S.O., Justice, C.O., Dazlich, D.A., and Randall, D.A. (1994) A global 1degree by 1 degree NDVI data set for climate studies. Part 2: the generation of global fields of terrestrial biophysical parameters from NDVI. Int. J. Remote Sensing, Vol. 15, No. 17, pp. 3519-3545 https://doi.org/10.1080/01431169408954343
  40. Spanner, M.A., Pierce, L.L., Running, S.W., and Peterson, D.L. (1990) The seasonality of AVHRR data of temperature coniferous forests: Relation to leaf area index. Remote Sens, Environ, Vol. 33, pp. 97-112 https://doi.org/10.1016/0034-4257(90)90036-L
  41. Sun, G., Noormets, A., Chen, J., and McNulty, S.G. (2008) Evapotranspiration estimates from eddy covariance towers and hydrologic modeling in managed forests in Northern Wisconsin, USA. Agricultural and Forest Meteorology, Vol. 148, No. 2, pp. 257-267 https://doi.org/10.1016/j.agrformet.2007.08.010
  42. Verhoef, A. and Feddes, R.A. (1991) Preliminary review of revised FAO radiation and temperature methods. Report 16, LandbouwuniversiteitWageningen, Wageningen
  43. Wigmosta, M.L., and Lettenmaier, D.P. (1994) A distributed hydrologyvegetatio model for complex terrain. Water Resources Research, Vol. 30, pp. 1665-1679 https://doi.org/10.1029/94WR00436
  44. EOS Data Gateway : http://edcimswww.cr.usgs.gov/pub/imswelcome/index.html