DOI QR코드

DOI QR Code

Locally Powerful Unit-Root Test

국소적 강력 단위근 검정

  • Published : 2008.07.16

Abstract

The unit root test is the major tool for determining whether we use differencing or detrending to eliminate the trend from time series data. Dickey-Fuller test (Dickey and Fuller, 1979) has the low power of test when the sample size is small or the true coefficient of AR(1) process is almost unit root and the Bayesian unit root test has complicated testing procedure. We propose a new unit root testing procedure, which mixed Bayesian approach with the traditional testing procedure. Using simulation studies, our approach showed locally higher powers than Dickey-Fuller test when the sample size is small or the time series has almost unit root and simpler procedure than Bayesian unit root test procedure. Proposed testing procedure can be applied to the time series data that are not observed as process with unit root.

시계열 자료를 분석할 때, 시계열 자료가 가지고 있는 추세를 제거하기 위하여 결정적 추세인 경우 회귀모형을 이용하고, 확률적 추세인 경우 차분하는 방법을 이용한다. 이 때 제거의 옳바른 기준이 되는 검정 방법이 단위근 검정이다. 그러나 기존의 Dickey-Fuller 검정 (Dickey와 Fuller, 1979)은 표본 수가 작고, 단위근에 가까울 경우 검정력이 낮으며, 베이지안 단위근 검정은 절차가 복잡하다. 본 논문에서는 기존의 두 방법들의 문제점을 해결하기 위하여, 전통적 Dickey-Fuller 검정 방법과 베이지안 방법을 결합한 형태의 검정방법으로 제안하였다. 제안된 검정방법은 모형 AR(1)에서 계수가 거의 1이거나 표본 수가 작을 경우, 기존의 Dickey-Fuller 검정보다 검정력이 높을 뿐만 아니라 일반적인 베이지안 방법 보다 절차가 간단한 검정법이 된다.

Keywords

References

  1. 박유성, 김기환 (2004), , 자유아카데미, 서울
  2. Chib, S. (1995). Marginal likelihood from the Gibbs output, Journal of the American Statistical Association, 90, 1313-1321 https://doi.org/10.2307/2291521
  3. Chib, S. and Jeliazkov, I. (2001). Marginal likelihood from the Metropolis-Hastings output, Journal of the American Statistical Association, 96, 270-281 https://doi.org/10.1198/016214501750332848
  4. Dickey, D. A. and Fuller, W. A. (1979). Distribution of the estimators for autoregressive time series with a unit root, Journal of the American Statistical Association, 74, 427-431 https://doi.org/10.2307/2286348
  5. Dickey, D. A. and Fuller, W. A. (1981). Likelihood ratio statistics for autoregressive time series with a unit root, Econometrica, 49, 1057-1072 https://doi.org/10.2307/1912517
  6. Enders, W. (2004). Applied Econometric Time Series. 2nd Edition. John Wiley & Sons, New York
  7. Hamilton, J. D. (1994). Time Series Analysis, Princeton University Press, Princeton
  8. Kass, R. E. and Raftery, A. E. (1995). Bayes factors, Journal of the American Statistical Association, 90, 773-795 https://doi.org/10.2307/2291091
  9. Koop, G. (1992). 'Objective' Bayesian unit root tests, Journal of Applied Econometrics, 7, 65-82 https://doi.org/10.1002/jae.3950070107
  10. Reilly, C., Gelman, A. and Katz, J. (2001). Poststratification without population level information on the poststratifying variable, with application to political polling, Journal of the American Statistical Association, 96, 1-11 https://doi.org/10.1198/016214501750332640
  11. Sims, C. A. (1988). Bayesian skepticism on unit-root econometrics, Journal of Economic Dynamics and Control, 12, 463-474 https://doi.org/10.1016/0165-1889(88)90050-4
  12. Stock, J. H. (1991). Bayesian approaches to the 'unit root' problem: A comment, Journal of Applied Econometrics, 6, 403-411 https://doi.org/10.1002/jae.3950060408
  13. West, M. and Harrison, J. (1989). Bayesian Forecasting and Dynamic Models, Springer, New York