QTL Mapping of Resistance to Gray Leaf Spot in Ryegrass: Consistency of QTL between Two Mapping Populations

  • Curley, J. (Dept. of Crop Sciences, Univ. of Illinois) ;
  • Chakraborty, N. (Dept. of Crop Sciences, Univ. of Illinois) ;
  • Chang, S. (Bio Regional Innovation Center and Department of Medical Science, Youngdong University) ;
  • Jung, G. (Dept. of Plant, Soil, and Insect Sciences, Univ. of Massachusettes)
  • 발행 : 2008.06.30

초록

Gray leaf spot (GLS)은 Pyricufaria oryzae Cavara에 의해 발병하는 중요한 곰팡이병으로 최근 주요 잔디류 및 목초류에 해당하는 퍼레니얼 라이그래스 (Perennial ryegrass; Lolium perenne L.)에서 발생되는 것으로 보고되었다. 또한 이 곰팡이는 벼의 도열병을 일으키는데, 이는 기주 저항성에 의해 방제될 수 있지만 이 저항성의 지속기간에 문제가 있는 것으로 알려져 있다. 지금까지 퍼레니얼 라이그래스에서는 GLS 저항성에 관한 내용이 거의 보고되지 않았다. 그러나 이탈리안 라이그래스 x 퍼레니얼 라이그래스 mapping population에서 GLS 저항성에 관한 주요 양적형질 유전자좌 (QTL)가 연관군 (linkage group) 3과 6 상에서 각각 발견되었다. 이 두 가지 양적형질 유전자좌가 다음 세대에서도 여전히 나타나고, 이들이 다른 유전적 배경 하에서도 기능할 수 있다는 사실을 확인하기 위해 기존의 mapping population으로부터 나온 저항성 개체를 저항성을 갖고 있지 않은 다른 퍼레니얼 클론과 교잡시켜 새로운 mapping population을 만들었다. 이 새로운 mapping population에서 RAPD, RFLP 및 SSR 마커를 이용하여 QTL 분석을 실시하였다. 이 결과, 비록 연관군 6 상에서는 양적형질 유전자좌가 확인되지 않았지만 연관군 3 상의 양적형질 유전자좌는 새로운 mapping population에서도 여전히 나타나고 있음이 확인되었다. 또한 두 개의 새로운 양적형질 유전자좌가 저항성을 갖고 있지 않았던 부모개체에서도 발견되었다. 본 실험 결과는 라이그래스에 있어서 GLS 저항성의 유전적 구조를 이해하는데 도움을 줄 뿐만 아니라 퍼레니얼 라이그래스 육종 프로그램에 사용상 편의성을 제고시킬 것이다.

Gray leaf spot (GLS) is a serious fungal disease caused by Pyricularia oryzae Cavara, recently reported on the important turf and forage species, perennial ryegrass (Lolium perenneL.). This fungus also causes rice blast, which is usually controlled by host resistance, but durability of resistance is a problem. Few instances of GLS resistance have been reported in perennial ryegrass. However, two major QTL for GLS resistance have been detected on linkage groups 3 and 6 in an Italian x perennial ryegrass mapping population. To confirm that those QTL are still detectable in the next generation and can function in a different genetic background, a resistant segregant from this population has been crossed with an unrelated susceptible perennial clone, to form a new mapping population segregating for GLS resistance. QTL analysis has been performed in the new population, using two different ryegrass field isolates and RAPD, RFLP, and SSR marker-based linkage maps for each parent. Results indicate the previously identified QTL on linkage group 3 is still significant in the new population, with LOD and percent of phenotypic variance explained ranging from 2.0 to 3.5 and 5% to 10%, respectively. Also two QTL were detected in the susceptible parent, with similar LOD and phenotypic variance explained. Although the linkage group 6 QTL was not detected, the major QTL on linkage group 3 appears to beconfirmed. These results will add to our understanding of the genetic architecture of GLS resistance in ryegrass, which will facilitate its use in perennial ryegrass breeding programs.

키워드

참고문헌

  1. Bonos, S.A., M.D.Casler, and W.A.Meyer.2003.Inheritance of dollar spot resistance in creeping bentgrass.Crop Sci.43:2189-2196 https://doi.org/10.2135/cropsci2003.2189
  2. Bonos, S.A., C.Kubik, B.B.Clarke, and W.A.Meyer.2004.Breeding perennial ryegrass for resistance to gray leaf spot.Crop Sci.44:575-580 https://doi.org/10.2135/cropsci2004.5750
  3. Brummer, E.C., G.L.Graef, J.Orf, J.R Wilcox, and R.C.Shoemaker.1997.Mapping QTL for seed protein and oil content in eight soybean populations.Crop Sci.37:370-378 https://doi.org/10.2135/cropsci1997.0011183X003700020011x
  4. Chakraborty, N., J.Bae, S.Warnke, T.Chang, and G.Jung.2005.Linkage map construction in allotetraploid creeping bentgrass (Agrostis stolonifera L.).Theor.Appl.Genet.111:795-803 https://doi.org/10.1007/s00122-005-2065-x
  5. Chauhan, R, M.L.Farman, H.-B.Zhang and S.A.Leong.2002.Genetic and physical mapping of a rice blast resistance locus, Pi-C039(t), that corresponds to the avirulence gene A VR1-C039 of Magnaporthe grisea.Mol.Gen.Genomics 267:603-612 https://doi.org/10.1007/s00438-002-0691-4
  6. Curley, J., S.C.Sim, S.Warnke, S.Leong, R .Barker, and G.Jung.2005.QTL mapping of resistance to gray leaf spot in ryegrass.Theor.Appl.Genet.111:1107-1117 https://doi.org/10.1007/s00122-005-0036-x
  7. Fjellstrom, R, C.A.Conaway-Bormans, A.M.McClung, M.A.Marchetti, A.R Shank, W.D.Park.2004.Development of DNA markers suitable for marker assisted selection of three Pi genes conferring resistance to multiple Pyricularia grisea pathotypes.Crop Sci.2004 44: 1790-1798 https://doi.org/10.2135/cropsci2004.1790
  8. Han, Y., B.A.Bonos, B.B.Clarke, and W.A.Meyer.2006.Inheritance of resistance to gray leaf spot disease in perennial ryegrass.Crop Sci.46:1143-1148 https://doi.org/10.2135/cropsci2005.07-0217
  9. Hoffman, N., and A.Hamblin.2001.Reaction of perennial ryegrass to gray leaf spot following inoculation in the field, 2000.Biological and Cultural Tests 16:T56
  10. Keirn, P., B.Diers, T.Olson, and R Shoemaker.1990.RFLP mapping in soybean: Association between marker loci and variation in quantitative traits.Genetics 126:7735-742
  11. Lander, E., and D.Botstein.1989.Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps.Genetics 121:185-199
  12. Landschoot, P., and B.Hoyland.1992.Gray leaf spot of perennial ryegrass turf in Pennsylvania.Plant Dis.76:1280-1282 https://doi.org/10.1094/PD-76-1280
  13. Lubberstedt, T., D.Klein, and A.E.Melchinger.1998.Comparative quantitative trait loci mapping of partial resistance to Puccinia sorghi across four populations of European flint maize.Phytopathology 88:1324-1329 https://doi.org/10.1094/PHYTO.1998.88.12.1324
  14. Melchinger A.E., H.F.Utz, and C.C.Schon, 1998.Quantitative trait locus (QTL) mapping using different testers and independent population samples in maize reveals low power of QTL detection and large bias in estimates of QTL effects.Genetics 149:383-403
  15. Miura, Y., C.Ding, R Ozaki, M.Hirata, M.Fujimori, W.Takahashi, H.Cai, K.Mizuno.2005.Development of EST-derived CAPS and AFLP markers linked to a gene for resistance to ryegrass blast (Pyricularia sp.) in Italian ryegrass (Lolium multiflorum Lam.) Theor.Appl.Genet.111:811 - 818 https://doi.org/10.1007/s00122-005-0001-8
  16. Paterson, A.H., S.Damon, J.D.Hewitt, D.Zamir, H.D.Rabinowitch, S.E. Lincoln, E.S.Lander, and S.D.Tanksley.1991.Mendelian factors underlying quantitative traits in tomato: Comparison across species, generations, and environments.Genetics 127:181-197
  17. Sim, S., T.Chang, J.Curley, S.Warnke, R Barker, and G.Jung.2005. Chromosomal rearrangements differentiating the rye grass genome from the Triticeae, oat, and rice genomes using common heterologous RFLP probes.Theor.Appl.Genet.110:1011-1019 https://doi.org/10.1007/s00122-004-1916-1
  18. Uddin, W., K.Serlemitsos, and G.Viji.2003.A temperature and leaf wetness duration-based model for prediction of gray leaf spot of perennial ryegrass turf.Phytopathology 93:336-343 https://doi.org/10.1094/PHYTO.2003.93.3.336
  19. Van Ooijen, J.W., M.P.Boer, RC.Jansen, and C.Maliepaard.2002.MapQTL$\circledR$version 4.0: Software for the calculation of QTL positions on genetic maps.Plant Research International, Wageningen, the Netherlands
  20. Vincelli, P., and E.Dixon 2002.Resistance to QoI (Strobilurin-like) fungicides in isolates of Pyricularia grisea from perennial ryegrass.Plant Dis.86:235-240 https://doi.org/10.1094/PDIS.2002.86.3.235
  21. Warnke, S.E., R.E.Barker, G.Jung, S.Sim, M.A.Rouf Mian, M.C.Saha, L.A.Brilman, M.P.Dupal, and J.W.Forster.2004.Genetic linkage mapping of an annual x perennial rye grass population.Theor.Appl.Genet.109:294-304
  22. Williams, D.W., P.B.Burrus, and P.Vincelli.2001.Severity of gray leaf spot in perennial rye grass as influenced by mowing height and nitrogen level.Crop Sci.41:1207-1211 https://doi.org/10.2135/cropsci2001.4141207x