Fermentation Characteristics of Exopolysaccharide-Producing Lactic Acid Bacteria from Sourdough and Assessment of the Isolates for Industrial Potential

  • Jung, Seung-Won (Department of Food Science and Technology, Dongguk University) ;
  • Kim, Wang-June (Department of Food Science and Technology, Dongguk University) ;
  • Lee, Kwang-Geun (Department of Food Science and Technology, Dongguk University) ;
  • Kim, Cheol-Woo (Korea Advanced Food Research Institute) ;
  • Noh, Wan-Seob (Department of Food Science and Technology, Dongguk University)
  • Published : 2008.07.31

Abstract

Lactic acid bacteria (LAB) with antimicrobial activity and high exopolysaccharide (EPS) production ability isolated from sourdough were studied for their fermentation characteristics as potential new starter cultures. The values of pH, titratable acidity, and viable cell counts were $4.06{\pm}0.009-4.50{\pm}0.015,\;0.787{\pm}0.020%-1.172{\pm}0.018%,\;and\;8.78{\pm}0.08-8.98{\pm}0.06$ log CFU/ml, respectively. In order to select probiotics with a high survival rate in the gut, isolates were tested to assess resistance against the artificial gastric acid and bile juice. Viable LAB counts were significantly (p<0.05) affected by the acidity. At pH 2.0, the total declines in the initial bacterial counts were 4.52$\pm$0.07 log for S. thermophilus St-Body-1, >7.98$\pm$0.03 log for E. flavescens DU-10, >7.95$\pm$0.05 log for E. faecium DU-12, and 3.15$\pm$0.06 log for L. amylovorus DU-21. Among the strains, L. amylovorus DU-21 was the only strain that had bile tolerance under simulated gastrointestinal conditions. In order to improve EPS production by L. amylovorus DU-21, the influence of carbon source was studied. When glucose was used as a carbon source, EPS production dramatically increased to 17.19$\pm$0.28 g/l (p<0.05). The maximum cell growth (10.012$\pm$>0.012 log CFU/ml) and EPS production (18.71$\pm$0.19 g/l) were achieved when 15 g/l of glucose was employed as the carbon source.

Keywords

References

  1. A.O.A.C. 1995. Official Methods of Analysis, 15th Ed. p. 988, Association of Official Analytical Chemist, Washington. D.C., U.S.A
  2. Bouzar, F., J. Cerning, and M. Desmazeaud. 1997. Exopolysaccharide production and texture-promoting abilities of mixed-strain starter cultures in yoghurt production. J. Dairy Sci. 80: 2310-2317 https://doi.org/10.3168/jds.S0022-0302(97)76181-2
  3. Cerning, J. 1990. Exocellular polysaccharides produced by lactic acid bacteria. FEMS Microbiol. Rev. 87: 113-130 https://doi.org/10.1111/j.1574-6968.1990.tb04883.x
  4. Cerning, J. 1995. Production of exopolysaccharides by lactic acid bacteria and dairy propionibacteria. Lait 75: 463-472 https://doi.org/10.1051/lait:19954-536
  5. Cerning, J. and V. M. E. Marshall. 1999. Exopolysaccharides produced by the dairy lactic acid bacteria. Recent Results Develop. Microbiol. 3: 195-209
  6. Christiansen, P. S., A. I. M. R. Madeira, and D. Edelstein. 1999. The use of ropy milk as stabilizer in the manufacture of ice cream. Milchwissenschaft 54: 138-140
  7. Coeuret, V., M. Gueguen, and J. P. Vernoux. 2004. Numbers and strains of lactobacilli in some probiotic products. Int. J. Food Microbiol. 97: 147-156 https://doi.org/10.1016/j.ijfoodmicro.2004.04.015
  8. Conway, P. L., S. L. Gorbach, and B. R. Goldin. 1987. Survival of lactic acid bacteria in the human stomach and adhesion to intestinal cells. J. Dairy Sci. 70: 1-12 https://doi.org/10.3168/jds.S0022-0302(87)79974-3
  9. Crescenzi, V. 1995. Microbial polysaccharides of applied interest: On-going research activities in Europe. Biotechnol. Progress 11: 251-259 https://doi.org/10.1021/bp00033a002
  10. Damiani, P., M. Gobbetti, L. Cossignani, A. Corsetti, M. S. Simonetti, and J. Rossi. 1996. The sourdough microflora characterization of hetero and homofermentative lactic acid bacteria, yeasts and their interactions on the basis of volatile compounds produced. Lebensmt Wis. Technol. 29: 63-70 https://doi.org/10.1006/fstl.1996.0009
  11. De Vuyst, L., L. Avonts, B. Hoste, M. Vancanneyt, J. Swings, P. Neysens, and R. Callewaert. 2004. The lactobin A and amylovorin L471 encoding genes are identical, and their distribution seems to be restricted to the species Lactobacillus amylovorus that is of interest for cereal fermentations. Int. J. Food Microbiol. 90: 93-106 https://doi.org/10.1016/S0168-1605(03)00298-8
  12. De Vuyst, L., F. De Vin, F. Vaningelgem, and B. Degeest. 2001. Recent developments in the biosynthesis and applications of heteropolysaccharides from lactic acid bacteria. Int. Dairy J. 11: 687-707 https://doi.org/10.1016/S0958-6946(01)00114-5
  13. Fooks, L. J., R. Fuller, and G. R. Gibson. 1999. Prebiotics, probiotics and human gut microbiology. Int. Dairy J. 9: 53-61 https://doi.org/10.1016/S0958-6946(99)00044-8
  14. Grant, C. and S. Salminen. 1998. The potential of Propionibacterium ssp. ss probiotics, pp. 588-603. In S. Salminen and A. von Wright (eds.), Lactic Acid Bacteria. Microbiological and Functional Aspects. Marcel Dekker Inc., New York, U.S.A
  15. Gilliland, S. E. and D. K. Walker. 1990. Factors to consider when selecting a dietary adjunct to produce a hypocholesteroleric effect in humans. J. Dairy Sci. 73: 905-911 https://doi.org/10.3168/jds.S0022-0302(90)78747-4
  16. Gilliland, S. E., T. E. Staley, and L. J. Bush. 1984. Importance of bile tolerance of Lactobacillus acidophilus used as dietary adjunct. J. Dairy Sci. 67: 3045-3051 https://doi.org/10.3168/jds.S0022-0302(84)81670-7
  17. Gobbetti, M., A. Corsetti, and J. Rossi. 1994. The sourdough microflora. Evolution of soluble carbohydrates during the sourdough fermentation. Microbiol. Aliments Nutr. 12: 9-15
  18. Havennar, R. and J. H. J. Husis. 1992. Probiotics; A general view, pp. 151-170. In B. J. B. Wood (ed.), The Lactic Acid Bacteria in Health and Disease. Elsevier Press, London, U.K
  19. Henriksson, R., P. Bergstrom, L. Franzen, F. Lewin, and G.. Wagenius. 1999. Aspects of reducing gastrointestinal adverse effects associated with radiotherapy. Acta Oncol. 38: 226-231
  20. Holzapfel, W. H., P. Haberer, J. Snel, U. Schillinger, and J. H. J. Huis in't Veld. 1998. Overview of gut flora and probiotics. Int. J. Food Microbiol. 41: 85-101 https://doi.org/10.1016/S0168-1605(98)00044-0
  21. Hood, S. K. and E. A. Zottola. 1988. Effect of low pH on the ability of Lactobacillus acidophilus to survive and adhere to human intestinal cells. J. Food Sci. 53: 1514-1516 https://doi.org/10.1111/j.1365-2621.1988.tb09312.x
  22. Hosono, A., J. Lee, A. Ametani, M. Natsume, M. Hirayama, T. Adachi, and S. Kaminogawa. 1997. Characterization of a watersoluble polysaccharide fraction with immunopotentiating activity from Bifidobacterium adolescentis M101-4. Biosci. Biotechnol. Biochem. 61: 312-316 https://doi.org/10.1271/bbb.61.312
  23. Jolly, L. 2002. Exploiting exopolysaccharides from lactic acid bacteria. Antonie Van Leeuwenhoek 82: 367-374 https://doi.org/10.1023/A:1020668523541
  24. Jung, S. W., W. J. Kim, K. G. Lee, and W. S. Noh. 2007. Isolation and identification of lactic acid bacteria from sourdough with high exopolysaccharide production ability. J. Microbiol. Biotechnol. [In review]
  25. Kang, H. M., I. S. Son, Y. S. Um, and C. I. Chung. 1999. Comparison of exopolysaccharide producing lactic acid bacteria isolated from fermented foods. I. A study on the availability of carbon sources for exopolysaccharide production by Streptococcus thermophilus and Lactobacillus ssp. Kor. J. Food Sci. Ani. Resour. 19: 121-126
  26. Kitazawa, H., T. Itoh, Y. Tomioka, M. Mizugaki, and T. Yamaguchi. 1996. Induction of IFN-$\gamma$ and IL-1$\alpha$ production in macrophages stimulated with phosphopolysaccharide produced by Lactococcus lactis ssp. cremoris. Int. J. Food Microbiol. 31: 99-106 https://doi.org/10.1016/0168-1605(96)00968-3
  27. Laws, A. P. and V. M. Marshall. 2001. The relevance of exopolysaccharides to the rheological properties in milk fermented with ropy strains of lactic acid bacteria. Int. Dairy J. 11: 709-721 https://doi.org/10.1016/S0958-6946(01)00115-7
  28. Lee, W. J. and J. A. Lucey. 2004. Structure and physical properties of yoghurt gels: Effect of inoculation rate and incubation temperature. J. Dairy Sci. 87: 3153-3164 https://doi.org/10.3168/jds.S0022-0302(04)73450-5
  29. Lee, Y. K. and S. Salminen. 1995. The coming age of probiotics. Trends Food Sci. Technol. 6: 241-245 https://doi.org/10.1016/S0924-2244(00)89085-8
  30. Leroy, F., T. De Winter, T. Adriany, P. Neysens, and L. De Vuyst. 2006. Sugars relevant for sourdough fermentation stimulate growth of and bacteriocin production by Lactobacillus amylovorus DCE 471. Int. J. Food Microbiol. 112: 102-111 https://doi.org/10.1016/j.ijfoodmicro.2006.05.016
  31. Monchois, V., R. M. Willwmot, and P. Monsan. 1999. Glucansucrases: Mechanism of action and structure-function relationships. FEMS Microbiol. Rev. 23: 131-151 https://doi.org/10.1111/j.1574-6976.1999.tb00394.x
  32. Naidu, A. S., W. R. Bidlack, and R. A. Clemens. 1999. Probiotic spectra of lactic acid bacteria (LB). Crit. Rev. Food Sci. Nutr. 38: 13-126
  33. Nakajima, H., T. Toba, and S. Toyoda. 1995. Enhancement of antigen-specific antibody production by extracellular slime products from slime-forming Lactococcus lactis subspecies cremoris SBT 0495 in mice. Int. J. Food Microbiol. 25: 153-158 https://doi.org/10.1016/0168-1605(94)00095-N
  34. Pereira, D. I., A. L. McCartney, and G. R. Gibson. 2003. An in vitro study of the probiotic potential of a bile salt hydrolyzing Lactobacillus fermentum strain, and determination of its cholesterollowering properties. Appl. Environ. Microbiol. 69: 4743-4752 https://doi.org/10.1128/AEM.69.8.4743-4752.2003
  35. Phillippe, D. and M. Beat. 2001. Applications of exopolysaccharides in the dairy industry. Int. Dairy J. 11: 759-768 https://doi.org/10.1016/S0958-6946(01)00119-4
  36. Prasad, J., H. Gill, J. Smart, and P. K. Gopal. 1998. Selection and characterization of Lactobacillus and Bifidobacterium strains for use as probiotics. Int. Dairy J. 8: 993-1002 https://doi.org/10.1016/S0958-6946(99)00024-2
  37. Ricciardi, A. and F. Clementi. 2000. Exopolysaccharides from lactic acid bacteria: Structure, production and technological applications. Italian J. Food Sci. 1: 23-45
  38. Rohm, H. and A. Kovac. 1994. Effects of starter cultures on linear viscoelastic and physical properties of yogurt gels. J. Texture Studies 25: 311-329 https://doi.org/10.1111/j.1745-4603.1994.tb00763.x
  39. Rohm, H. and W. Schmid. 1993. Influence of dry matter fortification of flow properties of yogurt. 1. Evaluation of flow curves. Milchwissenschaft 48: 556-560
  40. Ruijssenaars, H. J., F. Stingele, and S. Hartmans. 2000. Biodegradability of food-associated extracellular polysaccharides. Curr. Microbiol. 40: 194-199 https://doi.org/10.1007/s002849910039
  41. Salminen, S. and A. von Wright. 1998. Current probiotics - safety assured? Microbial Ecol. Health Dis., 10: 68-77 https://doi.org/10.1080/089106098435287
  42. Sanders, M. E. and J. H. in't Veld. 1999. Bringing a probioticcontaining functional food to the market: Microbiological, product, regulatory and labeling issues. Antonie van Leeuwenhoek 76: 293-315 https://doi.org/10.1023/A:1002029204834
  43. Sebastiani, H. and G. Zelger. 1998. Texture formation by thermophilic lactic acid bacteria. Milchwissenschaft 53: 15-20
  44. Shah, N. P. 2007. Functional cultures and health benefits. Int. Dairy J. 17: 1267-1277
  45. Sikkema, J. and T. Oba. 1998. Extracellular polysaccharides of lactic acid bacteria. Snow Brand R&D Rep. 107: 1-31
  46. Simsek, O., A. H. Con, and S. Tulumo lu. 2006. Isolating lactic starter cultures with antimicrobial activity for sourdough processes. Food Control 17: 263-270 https://doi.org/10.1016/j.foodcont.2004.10.011
  47. Vogel, R. F., R. Knorr, M. R. A. Muller, U. Steudel, M. G. Ganzle, and M. A. Ehrmann. 1999. Non-dairy lactic fermentations: The cereal world. Antonie Van Leeuwenhoek 76: 403-411 https://doi.org/10.1023/A:1002089515177
  48. Yang, Z., E. Huttunen, M. Staaf, G. Widmalm, and H. Tenhu. 1999. Separation, purification and characterization of extracellular polysaccharides produced by slime-forming Lactococcus lactis ssp. cremoris strains. Int. Dairy J. 9: 631-638 https://doi.org/10.1016/S0958-6946(99)00133-8
  49. Yoon, K. Y., E. E. Woodams, and Y. D. Hang. 2006. Production of probiotic cabbage juice by lactic acid bacteria. Bioresour. Technol. 97: 1427-1430 https://doi.org/10.1016/j.biortech.2005.06.018
  50. Ziemer, C. J. and G. R. Gibson. 1998. An overview of probiotics, prebiotics and synbiotics in the functional food concept: Perspectives and future strategies. Int. Dairy J. 8: 473-479 https://doi.org/10.1016/S0958-6946(98)00071-5