Thermochemical Conversion of Oil sand Bitumen in Delayed Coking Reactor

코킹 공정(工程)을 이용한 오일샌드 역청(瀝靑)의 열화학(熱化學)적 전환(轉換)

  • Published : 2008.06.27

Abstract

The study of coking technology to upgrade oil sand bitumen which is considered as alternative fuel was performed by using thermogravity analyzer and delayed coking reactor(600ml). To analyzed and compared coking characteristics of oil sand bitumen, the reactivities of oil sand bitumen were measured in the TGA. At the temperature conditions of $400{\sim}550^{\circ}C$ and the temperature rising velocity of $50^{\circ}C/min$. the termination time of coking reaction and conversion efficiencies increased with an increase of bed temperature. However the increase rate decreased over $450^{\circ}C$. So the coking reaction with oil sand bitumen might be over $450^{\circ}C$. Also the termination time decreased with increasing the temperature rising velocity. But the content of coke increased with increasing temperature rising velocity. At the experiments in the delayed coker, the temperature condition at maximum oil yield was $475^{\circ}C$ and the fuel properties of oil from coking reaction was almost equal with conventional diesel. It was verified that the coking process might be useful process to upgrade the oil sand bitumem by using API and SIMDAS.

석유를 대체할 수 있는 자원 중의 하나인 오일샌드 역청의 열화학적 전환을 통해 생산된 연료유 특성을 열천칭 분석기와 중질유들의 전환 공정에 사용되는 딜레이드 코킹 반응기(600ml)를 이용하여 분석하였다. 동일한 $50^{\circ}C/min$의 승온 속도로 최종 코킹 온도를 $400{\sim}550^{\circ}C$까지 변화시킨 결과, 최종 코킹 온도가 증가할수록 코킹이 완료되는 시간과 전환률이 증가하였다. 그러나 $450^{\circ}C$이상의 온도에서는 미비하게 증가하여 코킹 운전이 적어도 $450^{\circ}C$ 이상이 되어야 함을 알 수 있었다. 딜레이드 코킹 반응기의 최대 액체 수율은 $475^{\circ}C$의 조건으로 나타났으며 코킹에 의해 생성되는 오일의 API, SIMDAS분석을 통해 경질화가 진행되어 일반적인 디젤과 비슷한 연료 특성을 가짐을 확인하였다.

Keywords

References

  1. Stonehouse, D. and Jaremko, D., 2006 : Bitumen busters- Upgrading oil sands adds value, creates new market, Alberta's Heavy Oil and Oil Sands, Alberta Government, Canada
  2. Furimsky, E., 2003 : Emissions of carbon dioxide from tar sands plants in canada, Energy & Fuels, 17, pp. 1541-1548 https://doi.org/10.1021/ef0301102
  3. Phillips, C. R. and Chao, K. S., 1977 : Desulphurization of athabasca petroleum coke by chemical oxidation and solvent extraction, Fuel, 56, pp. 70-72 https://doi.org/10.1016/0016-2361(77)90045-X
  4. Furimsky, E., 1985 : Gasification reactivities of cokes derived from athabasca bitumen, Fuel Proc. Tech., 11, pp. 167-182 https://doi.org/10.1016/0378-3820(85)90026-8
  5. Dutta, R. P., McCaffrey, W. C., Gray, M. R. and Muehlenbachs, K., 2001 : Use of 13C tracers to determine mass-transfer limitations on thermal cracking of thin films of bitumen, Fuel Proc. Tech., 15, pp. 1087-1093
  6. Kelemen, S. R., Siskin, M., Gorbaty, M. L., Ferrughelli, D. T., Kwiatek, P. J., Brown, L. D., Eppig, C. P., and Kennedy,R. J. 2007: Delayed coker coke morphology fundamentals: Mechanistic implications based on XPS analysis of the composition of vanadium- and Nickel-containing additives during coke formation, Energy & Fuels, 21, pp. 927-940 https://doi.org/10.1021/ef060493e
  7. Rodriquez, J., Tierney, J. W., and Wender, I., 1994 : Evaluation of a delayed coking process by 1H and 13C N.M.R. spectroscopy: 1. Material balances, Fuel, 73, pp. 1863-1869 https://doi.org/10.1016/0016-2361(94)90213-5
  8. mer, G., Rudnick, L. R., and Schobert, H. H., 2006 : Delayed coking of decant oil and Coal in a laboratoryscale coking unit, Energy & Fuels, 20, pp. 1647-1655 https://doi.org/10.1021/ef0503820
  9. Siskin, M., Kelemen, S. R., Gorbaty, M. L., Ferrughelli, D. T., Brown, L. D., Eppig, C. P., and Kennedy, R. J., 2006 : Chemical approach to control morphology of coke produced in delayed coking, Energy & Fuels, 20, pp. 2117- 2124 https://doi.org/10.1021/ef060261f
  10. Rodriguez-Reinoso, F., Santana, P., Palazon, E. R., Diez, M. A., and Marsh, H., 1998 : Delayed coking: Industrial and laboratory aspects, Carbon, 36, pp. 105-116 https://doi.org/10.1016/S0008-6223(97)00154-1
  11. 이시훈, 최영찬, 이재구, 김재호, 2004 : 농임산 폐기물의 열분해에서 승온속도 영향 연구, 한국폐기물학회지, 21, pp. 465-471
  12. 이선훈, 엄민섭, 유경선, 이영수, 김남찬, 이시훈, 이재구, 김재선, 2006 : 유동층 열분해로에 의하여 생산된 상수리 나무 바이오오일의 특성, 자원리싸이클링학회지, 15, pp. 3-11