• Title/Summary/Keyword: Fuel

Search Result 17,609, Processing Time 0.05 seconds

PROGRESS IN NUCLEAR FUEL TECHNOLOGY IN KOREA

  • Song, Kun-Woo;Jeon, Kyeong-Lak;Jang, Young-Ki;Park, Joo-Hwan;Koo, Yang-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.41 no.4
    • /
    • pp.493-520
    • /
    • 2009
  • During the last four decades, 16 Pressurized Water Reactors (PWR) and 4 Pressurized Heavy Water Reactors (PHWR) have been constructed and operated in Korea, and nuclear fuel technology has been developed to a self-reliant state. At first, the PWR fuel design and manufacturing technology was acquired through international cooperation with a foreign partner. Then, the PWR fuel R&D by Korea Atomic Energy Research Institute (KAERI) has improved fuel technology to a self-reliant state in terms of fuel elements, which includes a new cladding material, a large-grained $UO_2$ pellet, a high performance spacer grid, a fuel rod performance code, and fuel assembly test facility. The MOX fuel performance analysis code was developed and validated using the in-reactor test data. MOX fuel test rods were fabricated and their irradiation test was completed by an international program. At the same time, the PWR fuel development by Korea Nuclear Fuel (KNF) has produced new fuel assemblies such as PLUS7 and ACE7. During this process, the design and test technology of fuel assemblies was developed to a self-reliant state. The PHWR fuel manufacturing technology was developed and manufacturing facility was set up by KAERI, independently from the foreign technology. Then, the advanced PHWR fuel, CANFLEX(CANDU Flexible Fuelling), was developed, and an irradiation test was completed in a PHWR. The development of the CANFLEX fuel included a new design of fuel rods and bundles.. The nuclear fuel technology in Korea has been steadily developed in many national R&D programs, and this advanced fuel technology is expected to contribute to a worldwide nuclear renaissance that can create solutions to global warming.

Geometry Optimization of Dispersed U-Mo Fuel for Light Water Reactors

  • Ondrej Novak;Pavel Suk;Dusan Kobylka;Martin Sevecek
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3464-3471
    • /
    • 2023
  • The Uranium/Molybdenum metallic fuel has been proposed as promising advanced fuel concept especially in the dispersed fuel geometry. The fuel is manufactured in the form of small fuel droplets (particles) placed in a fuel pin covered by a matrix. In addition to fuel particles, the pin contains voids necessary to compensate material swelling and release of fission gases from the fuel particles. When investigating this advanced fuel design, two important questions were raised. Can the dispersed fuel performance be analyzed using homogenization without significant inaccuracy and what size of fuel drops should be used for the fuel design to achieve optimal utilization? To answer, 2D burnup calculations of fuel assemblies with different fuel particle sizes were performed. The analysis was supported by an additional 3D fuel pin calculation with the dispersed fuel particle size variations. The results show a significant difference in the multiplication factor between the homogenized calculation and the detailed calculation with precise fuel particle geometry. The recommended fuel particle size depends on the final burnup to be achieved. As shown in the results, for lower burnup levels, larger fuel drops offer better multiplication factor. However, when higher burnup levels are required, then smaller fuel drops perform better.

A Study on Mixture Preparation in a Port Fuel Injection Sl Engine During Engine Starting (흡기포트 분사방식의 가솔린 엔진에서 냉시동시 혼합기 형성에 관한 연구)

  • 황승환;이종화;민경덕
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.4
    • /
    • pp.15-22
    • /
    • 2002
  • As the emission regulations on the automobiles have been increasingly stringent, precise control of air/fuel ration is one of the most important issues on the gasoline engines. Although many researches have been carried out to identify the fuel transport phenomena in the port fuel injection gasolines, mixture preparation in the cylinder has not been fully understood due to the complexity of fuel film behavior, In this paper, the mixture preparation during cold engine start is studied by using a Fast Response Flame ionization Detector.(FRFID) In order to estimate the transportation of injected fuel from the intake port into cylinder, the wall wetting fuel model was used. The two coefficient($\alpha$,$\beta$) of the wall-wetting fuel model was determined from the measured fuel mass that was inducted into the cylinder at the first cycle after injection cut-in. $\alpha$( ratio of directly inducted fuel mass into cylinder from injected fuel mass) and $\beta$ (ratio of indirectly inducted fuel mass into cylinder from wall wetted fuel film on the wall) was increased with increasing cooling water temperature. To reduce a air/fuel ratio fluctuation during cold engine start, the appropriate fuel injection rate was obtained from the wall wetting fuel model. Result of air/fuel ratio control, air/fuel excursion was reduced.

A Study on Fuel Transport Characteristics in a Port Fuel Injected Sl Engine during Transient Condition (흡기포트 분사방식의 가솔린 엔진에서 급가속시 연료 거동에 관한 연구)

  • 황승환;조용석;이종화
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.3
    • /
    • pp.20-27
    • /
    • 2003
  • In this paper, the fuel transport characteristics during transient condition was studied by using a Fast Response Flame Ionization Detector(FRFID). The quantitative measurement method for the inducted fuel mass into cylinder is studied. The inducted fuel mass into the cylinder was estimated by using calculated air-fuel ratio by hydrocarbon concentration of cylinder and air flow model. In order to estimate the transportation of injected fuel from the intake port into cylinder, the wall wetting fuel model was used. The two coefficient $\alpha$,$\beta$) of the wall-wetting fuel model was determined from the measured fuel mass that was inducted into the cylinder at the first cycle after injection cut-off To reduce an air/fuel ratio fluctuation during rapid throttle opening, the appropriate fuel injection rate was obtain from the wall wetting model with empirical coefficients. Result of air/fuel ratio control, air/fuel excursion was reduced.

Effect of central hole on fuel temperature distribution

  • Yarmohammadi, Mehdi;Rahgoshay, Mohammad;Shirani, Amir Saied
    • Nuclear Engineering and Technology
    • /
    • v.49 no.8
    • /
    • pp.1629-1635
    • /
    • 2017
  • Reliable prediction of nuclear fuel rod behavior of nuclear power reactors constitutes a basic demand for steady-state calculations, design purposes, and fuel performance assessment. Perfect design of fuel rods as the first barrier against fission product release is very important. Simulation of fuel rod performance with a code or software is one of the fuel rod design steps. In this study, a software program called MARCODE is developed in MATLAB environment that can analyze the temperature distribution, gap conductance value, and fuel and clad displacement in both solid and annular fuel rods. With a comparison of the maximum fuel temperature, fuel average temperature, fuel surface temperature, and gap conductance in solid and annular fuel, the effects of a central hole on the fuel temperature distribution are investigated.

Lubrication Characteristics in Fuel Injection Pump with Variation of Fuel Oils (연료 변경에 의한 연료분사펌프의 윤활 특성)

  • Hong, Sung-Ho
    • Tribology and Lubricants
    • /
    • v.31 no.6
    • /
    • pp.245-250
    • /
    • 2015
  • This study investigates the lubrication characteristics of fuel injection pumps with reference to different fuel oils. Medium-speed diesel engines use fuel oils with various viscosities, such as heavy fuel oil (HFO, which is a high-viscosity fuel oil) and light diesel oil (LDO, which is a low-viscosity fuel oil). When fuel oil with a low viscosity is used, both fuel oil and lubricating oil lubricate the system. Thus, the lubrication of the fuel injection pump is in a multi-viscosity condition when the fuel oil in use changes. We suggest three cases of multi-viscosity models, and divide the fuel injection pump into three lubrication sections: a, the new oil section; b, the mixed oil section; and c, the used oil section. This study compares the lubrication characteristics with variation of the multi-viscosity model, clearance. The volume of Section b does not affect the lubrication characteristics. The lubrication characteristics of the fuel injection pump are poor when high-viscosity fuel oil transfers to low-viscosity fuel oil. This occurs because the viscosity in the new oil section (i.e., Section a) dominates the lubrication characteristics of the fuel injection pump. However, the lubricant oil supply in the used oil section (i.e., Section c) can improve the lubrication characteristics in this condition. Moreover, the clearances of the stem and head significantly influence the lubrication characteristics when the fuel oil changes.

The Oxygen Potential of Urania Nuclear Fuel During Irradiation

  • Park, Kwang-Heon
    • The Korean Journal of Ceramics
    • /
    • v.4 no.2
    • /
    • pp.72-77
    • /
    • 1998
  • A defect model for UO$_2$ fuel containing soluble fission products was devised based on the defect structure of pure and doped uranias. Using the equilibrium between fuel solid-solution and fission-products and the material balance within the fuel, a tracing method to get the stoichiometry change of urania fuel with burnup was made. This tracing method was applied to high burnup urania fuel and DUPIC fuel. The oxygen potential of urania fuel turned out to increase slightly with burnup. The stoichiometry change was calculated to be negligible due to the buffering role f Mo. The oxygen potential of DUPIC fuel out to be sensitive to the initial chemical state of Mo in the fuel.

  • PDF

Characteristics of Vibration and Noise due to Various Fuel Quantity in Vehicle Fuel Tank (승용차 연료탱크의 유량변화에 따른 진동 소음 특성)

  • Ahn, Sung-Deok;Kim, Chan-Mook;Sa, Jong-Sung;Kang, Tae-Won;Kwon, Jo-Seph;Lim, Dong-Min
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.626-629
    • /
    • 2007
  • Vibration originated from the fuel pump is transmitted to the fuel pump module and fuel tank. Fuel tank transmits it to chassis of vehicle. Also, noise perturbed through fuel and fuel tank is radiated out. Dynamic characteristics of fuel tank are composed of tank structure and containing fuel quantity. Therefore, this study is focused at fuel tank with various quantity. As a result, characteristics of vibration for various fuel quantity in a tank are identified as the more mass of fuel is, the less the 1st resonance frequency decrease. Also, between acoustic camera and mode shape of modal analysis are used for searching the positions of radiated noise and are found to be in accordance with each other.

  • PDF

A Study on the Fluid Network Analysis for the LPG Supply System of the Gaseous Fuel Injection Type (LPG 가스분사 방식 연료공급시스템의 관로 유동해석에 관한 연구)

  • Yun, Jeong-Eui;Kim, Myung-Hwan;Nam, Hyeon-Sik;Jeong, Tae-Hyuung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.2
    • /
    • pp.35-40
    • /
    • 2007
  • The gaseous fuel injection (GFI) type in LPG fuel supply system has more advantage than the liquified fuel injection type from the viewpoint of durability and cost reduction. But in GFI system, to control pressure and temperature of gaseous fuel is needed to get precision fuel metering for the compressible characteristic of gaseous fuel. In this study, the effects of pressure and temperature on the fuel metering was simulated by commercial flow network analysis package, Flowmaster. And the fuel composition effects on the fuel metering were also studied to figure out the fuel metering characteristics.

Development of the Defect Analysis Technology for CANDU Spent Fuel

  • Kim, Yong-Chan;Lee, Jong-Hyeon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.2
    • /
    • pp.215-223
    • /
    • 2021
  • The domestic CANDU nuclear power plants have been operated for a long time and various unforeseen spent fuel defects have been discovered. As the spent fuel defects are important factors in the safety of the nuclear power plant, a study on the analysis of the spent fuel defects to prevent their recurrence is necessary. However, in cases where the fuel rods inside the fuel assembly are defected, it is difficult to dismantle the fuel assembly owing to their welded structure and the facility conditions of the plant. Therefore, it is impossible to analyze the spent fuel defect because it is difficult to visually check the shape of the fuel defect. To resolve these problems, an analysis technology that can predict the number of defected fuel rods and defect size was developed. In this study, we developed a methodology for investigating the root cause of spent fuel defects using a database of the earlier fuel defects in the plants. It is anticipated that in the future this analysis technology will be applied when spent fuel defects occur.