Speaker Identification Using Greedy Kernel PCA

Greedy Kernel PCA를 이용한 화자식별

  • 김민석 (서울시립대학교 컴퓨터과학부) ;
  • 양일호 (서울시립대학교 컴퓨터과학부) ;
  • 유하진 (서울시립대학교 컴퓨터과학부)
  • Published : 2008.06.30

Abstract

In this research, we propose a speaker identification system using a kernel method which is expected to model the non-linearity of speech features well. We have been using principal component analysis (PCA) successfully, and extended to kernel PCA, which is used for many pattern recognition tasks such as face recognition. However, we cannot use kernel PCA for speaker identification directly because the storage required for the kernel matrix grows quadratically, and the computational cost grows linearly (computing eigenvector of $l{\times}l$ matrix) with the number of training vectors I. Therefore, we use greedy kernel PCA which can approximate kernel PCA with small representation error. In the experiments, we compare the accuracy of the greedy kernel PCA with the baseline Gaussian mixture models using MFCCs and PCA. As the results with limited enrollment data show, the greedy kernel PCA outperforms conventional methods.

Keywords