초록
차선검출시스템은 지능형 차량 시스템의 중요한 요소이다. 차선검출 시, 주변 환경과 날씨의 변화 때문에 차선검출은 다양한 어려움에 직면하게 된다. 본 논문에서는 차선검출 및 추적을 위해 다양한 환경에서도 안정적으로 동작하는 간단하면서 효율적인 방법을 제안한다. 제안된 방법에서는 차선을 추적하고 차선의 기울기를 수정하기 위해 확률적 허프 변환(Probabilistic Hough Transform, PHT)과 최소자승법(Least-square method, LSM)를 이용한다. 일반적으로 차량의 내부에 설치된 카메라로부터 획득된 영상은 영상의 하단부분에서 차선이 비교적 뚜렷이 나타나고, 주변의 간섭을 적게 받는다는 가정 하에 제안된 방법에서는 차선검출 및 추적의 효율성을 증대시키기 위해 영상의 하단부분에 관심의 대상이 되는 두 개의 영역을 설정한다. 제안된 방법의 효율성을 입증하기 위해 정지영상과 비디오영상을 사용하여 실험하였고, 실험결과 제안된 방법이 강건하고, 신뢰성있는 결과를 얻었음을 보였다.
A lane detection system is one of the major components of intelligent vehicle systems. Difficulties in lane detection mainly come from not only various weather conditions but also a variety of special environment. This paper describes a simple and stable method for the broken lane tracking in various environments. Probabilistic Hough Transform (PHT) and the Least-square method (LSM) are used to track and correct the lane orientation. For the efficiency of the proposed method, two regions of interest (ROIs) are placed in the lower part of each image, where lane marking areas usually appear with less intervention in our system view. By testing in both a set of static images and video sequences, the experiments showed that the proposed approach yielded robust and reliable results.