DOI QR코드

DOI QR Code

Dynamic Analysis and Driving Input Shaping of Inchworm

이송자벌레의 동적 해석 및 구동 입력신호 설계

  • 김인수 (금오공과대학교 기계공학부) ;
  • 김영식 (금오공과대학교 기계공학부)
  • Published : 2008.07.20

Abstract

This paper presents an inchworm with three piezoelectric actuators. The dynamic stiffness of the inchworm is generally low compared to its driving condition, so mechanical vibration may degenerate the motion accuracy of the inchworm. The dynamic model of inchworm is identified by curve fitting technique based on the experimental frequency response function. For the precision motion control and low residual vibration of inchworm, driving input signal is designed by using cycloid step input and LQG control technique. Experimental result shows that proposed input shaping method is applicable effectively to the inchworm.

Keywords

References

  1. Takahashi, S., 1989, 'Recent Delvelopments in Multilayer Piezoelectric Ceramic Actuators and Their Applications', Ferroelectrics, Vol. 91, pp. 292-302
  2. Ge, P. and Jouaneh, M., 1995, 'Modeling Hysteresis in Piezoceramic Actuators', Precision Engineering, Vol. 17, No. 3, pp. 211-221 https://doi.org/10.1016/0141-6359(95)00002-U
  3. Kim, I., Kim, G. and Kim, Y., 2005, 'Modeling and Motion Control of the Piezoelectric Actuator for the Inchworm : Part1. Hysteresis Modeling of the Piezoelectric Actuator', Transactions of the Koreas Society for Noise and Vibration Engineering, Vol. 15, No. 7, pp. 871-877 https://doi.org/10.5050/KSNVN.2005.15.7.871
  4. Tzen, J., Jeng, S. and Chieng, W., 2002, 'Modeling of Piezoelectric Actuator for Compensation and Controller Design', Precision Engineering, pp. 1-17
  5. Mulling, J., Usher, T. and Dessent, B., 31, October, 2001, 'Load Characterization of High Displacement Piezoelectric Actuators with Various End Conditions', Sensors and Actuators A: Physical, Vol. 94, Iss. 1-2, pp. 19-24 https://doi.org/10.1016/S0924-4247(01)00688-4
  6. Higuchi, T., Watanade, M. and Kudoh, K., 1988, 'Precise Positioner Utilizing Rapid Deformations of a Piezoelectric Element', J. of Japan Society of Precision Engineering, Vol. 54, No. 11, pp. 2107-2112 https://doi.org/10.2493/jjspe.54.2107
  7. Kim, S. C. and Kim, S. H., 2001, 'A Precision Linear Actuator Using Piezoelectrically Driven Friction Force', Mechatronics, Vol. 11, Iss. 8, pp. 969-985 https://doi.org/10.1016/S0957-4158(00)00060-X
  8. Meckl, P. H., 1994, 'Robust Motion Control of Felxible Systems Using Feedforward Forcing Functions', IEEE Transactions on Control Systems Technology, Vol. 2., No. 3, pp. 245-254 https://doi.org/10.1109/87.317981
  9. Shin, Y. J., 2007, 'A Control Strategy for Systems with Single Flexible Mode to Reduce Residual Vibration', Journal of KSPE, Vol. 24, No. 11, pp. 91-100
  10. Aspinwall, D. M., 1980, 'Acceleration Profiles for Minimizing Residual Response', Journal of Dynamic System, Mesurement, and Control, Transactions of the ASME, Vol. 102, pp. 3-6 https://doi.org/10.1115/1.3140620
  11. Juang, J. N., 1994, 'Applied System Identification', chapter 7, Prentice Hall, Englewood Cliffs, New Jersey
  12. Zhou, K. Doyle, J. C. and Glover K., 1996, 'Robust and Optimal Control', Prentice Hall, Upper Saddle River, New Jersey
  13. Harris, M. C., 1987, 'Shock and Vibration Handbook', chapter 7, McGraw-Hill, New York