Constructing Area Cartogram Using a GIS Based Circular Cartogram Technique

GIS 기반 원형 카토그램 기법을 이용한 카토그램 제작 방법 연구

  • Kim, Young-Hoon (Department of Geography Education, Korea National University of Education)
  • 김영훈 (한국교원대학교 지리교육학과)
  • Published : 2008.06.30

Abstract

Many cartographers have for many years searched for a way to construct cartograms in which the sizes of geographic areas such as states, counties or census tracts are reseated in proportion to their population or some other socio-economic properties. While many techniques and algorithms for creating cartograms have been proposed, some of them are still extremely complex to generate in a proper manner, and many of them suffer either from this lack of readability or from seamless integration with GIS software. This paper, therefore, presents a simple population cartogam technique based on the Circular Cartogram Algorithm(CCA) by Dorling(1996) to tackle these drawbacks by drawing the areas as simple circles for use as a base map and linking the construction with GIS mapping processes. For an automated approach in the cartogram generation, this paper proposes a close coupling method of ArcView GIS 3.3. package in order for users to access to the cartopam algorithm. Then, they will be available through an interface that the ArcView GIS system allows user-written routines to be accessed easily. The CCA and its coupling architecture ensure to improve the potential applicability of the use of cartograms to census mapping at practical levels. As the cartogram examples, cartograms of population and property types in 2005 Korea census data sets are illustrated in the end, by which viewers can easily identify the residential concentration and their relative ratio in Seoul metropolitan area.

지리정보시스템(Geographic Information System, GIS) 활용이 확대됨에 따라서 다양하고 복잡한 사회경제적 변수의 시각적 전달은 공간 분석과 더불어 중요한 연구 주제라고 할 수 있다. 그러나 시각화 기술 자체의 복잡성과 GIS와의 연계성 부족으로 인해 지도화 및 시각화 기법이 제공하는 여러 장점들이 제대로 전달되고 있지 못하고 있다. 이에 대하여 본 연구에서는 카토그램(cartogram) 기법을 적용하여 다양한 인구 관련 변수의 공간적 관계를 효과적으로 지도화할 수 있는 방법을 논의하고자 한다. 이를 위하여 본 연구에서는 범용 GIS 프로그램에서 카토그램이 쉽게 제작될 수 있는 환경을 제안하고, 일반인이나 GIS 초급자들도 손쉽게 구현할 수 있는 과정을 제시하였다. 또한 카토그램의 시각적 정보 전달 및 활용성 증대을 위해서 본 연구에서는 Dorling (1996)이 개발한 원형 카토그램 알고리즘(Circular Cartogram Algorithm, CCA)과 ArcView GIS 3.3. 프로그램의 내적 결합 방법을 적용하여 CCA 기반의 원형 카토그램이 범용 GIS 프로그램내에서 효과적으로 구현될 수 있는 사례를 계시하였다. 마지막으로 실질적인 카토그램 제작 사례로써 2005년 인구 센서스 자료를 대상으로 인구와 가구 변수의 카토그램 지도를 통한 관련 센서스 변수들과 지리적인 공간 분포 패턴의 시각적 분석의 가능성을 제안하였다.

Keywords

References

  1. Dent, B.D., 1972, A note on the importance of shape in cartogram communication, The Journal of Geography, 71(7), 393-401 https://doi.org/10.1080/00221347208981697
  2. Dent, B.D., 1999, Cartography: The Thematic Map Design, WCB McGraw-Hill, Iowa
  3. Dorling, D., 1993, Map design for census mapping, The Cartographic Journal, 30, 167-183 https://doi.org/10.1179/000870493787860175
  4. Dorling, D., 1994, Cartograms for visualizing human geography, in Hearnshaw, H.M. and Unwin, D. (eds.), Visualization in Geographic Information Systems, Wiley, New York, 85-102
  5. Dorling, D., 1995a, A New Social Atlas of Britain, John Wiley & Sons, West Sussex, England
  6. Dorling, D., 1995b, Visualizing changing social structure from a census, Environment and Planning A, 27, 353-378 https://doi.org/10.1068/a270353
  7. Dorling, D., 1996, Area Cartograms: Their Use and Creation, CATMOGS 59, University of East Anglia, England
  8. Dorling, D. and Thomas, B., 2004, People and Places: a 2001 Census atlas of the UK, The Policy Press, Bristol, England
  9. Dougenik, J.A., Chrisman, N.R., and Niemeyer, D.R., 1985, An algorithm to construct continuous cartograms, The Professional Geographer, 37, 75- 81 https://doi.org/10.1111/j.0033-0124.1985.00075.x
  10. Du, C. and Liu, L., 1999, Constructing contiguous area cartogram using ArcView avenue, ESRI International Conference, Paper No. 489, San Diego, CA
  11. Gastner, M.T. and Newman, M.E., 2004, Diffusion-based method for producing density-equalizing maps, Proceedings of the National academy of Social Sciences of the United States of america, 101(20), 7499-7504
  12. Gatrell, A.C., 1987, On putting some statistical analysis into geographic information systems: with special reference to problems of map comparison and map overlay, Northern Regional Research Laboratory Research Report Number 5, Lancaster, U.K.
  13. Huber, W., 2002, Cartogram! (QD Version), http://arcscripts.esri.com/details.asp-dbid=11804, also available online at: access 13th Feb. 2008
  14. Jackel, C., 1997, Using ArcView to create contiguous and noncontiguous area cartograms, Cartography and Geographic Information Systems, 24(2), 101-109 https://doi.org/10.1559/152304097782439312
  15. Kreveld, M. and Speckmann, B., 2007, On rectangular cartograms, Computational Geometry, 37, 175-187 https://doi.org/10.1016/j.comgeo.2006.06.002
  16. Selvin, S., Merrill, D., Schulman, J., Sacks, S., Bedell, L., and Wong, L., 1988, Transformation of maps to investigate clusters of disease, Social Science and Medicine, 26(2), 215-222 https://doi.org/10.1016/0277-9536(88)90242-0
  17. Selvin, S., Schulman, J., and Merrill, D., 1992, Distance and risk measures for the analysis of spatial data: A study of childhood cancers, Social Science and Medicine, 34(7), 767-777
  18. Tobler, W.R., 1986, Pseudo-Cartograms, The American Cartographer, 13(1), 43-50 https://doi.org/10.1559/152304086783900194
  19. Waugh, T.C., 1986, The Geolink system: interfacing large systems, in Blackmore, M. (ed.), Proceedings of Auto-Carto, RICS, London, 76-85
  20. Wise, S. and Haining, R., 1991, The role of spatial analysis in geographic information systems, Annual Conference of the association for Geographic information, Birmingham, U.K., 3(24), 1-8
  21. Zhang, Z. and Griffith, D.A., 1997, Developing userfriendly spatial statistical analysis modules for GIS: An example using ArcView, Computers, Environment and Urban Systems, 21(1), 5-29 https://doi.org/10.1016/S0198-9715(97)00011-2
  22. http://gis.esri.com/library/userconf/proc99/proceed/papers/pap489/p489.htm, Also available online at: accessed 13th Feb. 2008