DOI QR코드

DOI QR Code

SNR Scalable Coding of 3-D Mesh Sequences Based on Singular Value Decomposition

특이값 분해에 기반한 3차원 메쉬 동영상의 SNR 계층 부호화

  • Heu, Jun-Hee (Signal Processing Lab., School of Electrical Engineering and INMC, Seoul National University) ;
  • Kim, Chang-Su (School of Electrical Engineering, Korea University) ;
  • Lee, Sang-Uk (Signal Processing Lab., School of Electrical Engineering and INMC, Seoul National University)
  • 허준희 (서울대학교 전기컴퓨터공학부, 뉴미디어통신공동연구소) ;
  • 김창수 (고려대학교 전기전자전파공학부) ;
  • 이상욱 (서울대학교 전기컴퓨터공학부, 뉴미디어통신공동연구소)
  • Published : 2008.05.30

Abstract

We propose an SNR-scalable coding algorithm for three-dimensional mesh sequences based on singular value decomposition (SVD). SVD achieves a coding gain by representing a mesh sequence with a small number of basis vectors and singular values. First, we introduce a bit plane coding scheme and derive a quantitative relationship between each bit plane and the reconstructed image quality. Using the relationship, we develop a rate-distortion (RD) optimized coding algorithm. Moreover, we propose prediction techniques to exploit the spatio-temporal correlations in real mesh sequences. Simulation results demonstrate that the proposed algorithm provides significantly better RD performance than conventional SVD coders.

본 논문은 특이값 분해에 기반하여 다양한 화질을 지원하는 3차원 메쉬 동영상의 SNR 계층 부호화 기법을 제안한다. SVD는 메쉬 동영상을 적은 수의 기저 벡터들과 특이값들로 표현하여 부호화 성능을 높일 수 있다. 본 논문에서는 비트 평면 부호화를 적용한 후 각 이진화 단계와 화질 사이의 관계를 정량적으로 유도한다. 유도된 관계식을 이용하여 비트량-왜곡 측면에서 최적화된 부호화 순서를 정의한다. 또한 시공간 영역의 잉여 정보를 효율적으로 제거하는 예측 기법을 제시한다. 모의 실험을 통하여 제안하는 알고리듬이 다양한 SNR을 지원하며 기존의 기법에 비해 향상된 비트량-왜곡 성능을 발휘함을 보인다.

Keywords

References

  1. Autodesk, http://www.autodesk.com/3dsmax
  2. Autodestk, http://www.autodesk.com/maya
  3. J. E. Lengyel, "Compression of time-dependent geometry," in Proc. ACM Symposium on Interactive 3D Graphics, pp. 89-96, July 1999
  4. J H. Yang, C. S. Kim, and S. U. Lee, "Compression of 3D triangle mesh sequences based on vertex-wise motion vector prediction," IEEE Trans. Circuits and System for Video Technology, vol. 12, no. 12, pp. 1179-1184, Dec. 2002 https://doi.org/10.1109/TCSVT.2002.806814
  5. L. lbarria, and J. Rossignac, "Dynapack: Space-time compression of the 3D animations of triangle meshes with fixed connectivity," in Proc. Eurographics/SIGGRAPH Symp. Computer Animation 2003, pp. 126-135, July 2003
  6. E. S. Jang, D. K. Kim, S. Y. Jung, M. J. Han, S. O. Woo, and S. J. Lee, "Interpolator Data Compression for MPEG4 Animation," IEEE Ttrans. Circuits and System for Video Technology, vol. 14, no. 7, pp. 989-1008, July 2004 https://doi.org/10.1109/TCSVT.2004.830670
  7. ISO/IEC 14 772-1, The Virtual Reality Modeling Language, 1997
  8. M. Alexa, and W. Muller, "Representing animations by principle components," Eurographics 2000, pp. 291-301, June 2000
  9. Z. Karni, and C. Gotsman, "Compression of soft-body animation sequences," Computers & Graphics, vol. 2004, no. 28, pp. 25-34, June 2004
  10. J. -H. Heu, C. - S. Kim, J. - H. Yang, and S. - U. Lee, "Compression of 3D mesh sequences based on R-D optimized principal component analysis," IEE Electronics letters, vol. 42, no. 14, pp. 799-800, July 2006 https://doi.org/10.1049/el:20060869
  11. I. Guskov and A. Khodakovsky, "Wavelet compression ofparametrically coherent mesh sequence," in Proc. SIGGRAPH, pp. 183-192, Aug. 1994
  12. R. Pajarola and J. Rossignac, "Compressed progressive mesh," IEEE Trans. Visualization and Computer Graphics, vol. 6, no. 1, pp. 79-93, Jan. 2000 https://doi.org/10.1109/2945.841122