DOI QR코드

DOI QR Code

등통로각압축이 결합된 압출 공정에 의한 알루미늄 분말의 치밀화 거동

Analysis of Aluminum Powder Densification by Continuous Front Extrusion-Equal Channel Angular Pressing

  • 윤승채 (충남대학교 나노소재공학부) ;
  • 김형섭 (충남대학교 나노소재공학부)
  • Yoon, Seung-Chae (Department of Nano Materials Engineering, Chungnam National University) ;
  • Kim, Hyoung-Seop (Department of Nano Materials Engineering, Chungnam National University)
  • 발행 : 2008.06.28

초록

Aluminum alloys are not only lightweight materials, but also have excellent thermal conductivity, electrical conductivity and workability, hence, they are widely used in industry. It is important to control and enhance the densification behavior of metal powders of aluminum. Investigation on the extrusion processing combined with equal channel angular pressing for densification of aluminum powders was performed in order to develop a continuous production process. The continuous processing achieved high effective strain and full relative density at $200^{\circ}C$. Optimum processing conditions were suggested for good mechanical properties. The results of this simulation helped to understand the distribution of relative density and effective strain.

키워드

참고문헌

  1. E. S. Kim, B. S. Chun and H. S. Kim: J. Korean Powder Matell. Inst., 3 (1996) 260 (Korean)
  2. S. C. Yoon, C. H. Bok, M. H. Seo, S. J. Hong and H. S. Kim: J. Korean Powder Matell. Inst., 15 (2008) 31 (Korean) https://doi.org/10.4150/KPMI.2008.15.1.031
  3. V. S. Srivastava, R. K. Mandal and S. N. Ojha: Mater. Sci. Eng. A, 383 (2004) 14 https://doi.org/10.1016/j.msea.2004.02.031
  4. F. Tang, H. Meeks, J. E. Spowart, T. Gnaeupel-Herold, H. Prask and I. E. Anderson: Mater. Sci. Eng. A, 386 (2004) 194 https://doi.org/10.1016/j.msea.2004.07.040
  5. I. V. Alexandrov, Y. T. Zhu, T. C. Lowe, R. K. Islamgaliev and R. Z. Valiev: Nanostructured Mater., 10 (1998) 45 https://doi.org/10.1016/S0965-9773(98)00026-9
  6. H. S. Kim and D. N. Lee: Mater. Trans., 45 (2004) 1829 https://doi.org/10.2320/matertrans.45.1829
  7. S. C. Yoon, H. S. Kim and C. K. Rhee: J. Korean Powder Metall. Inst., 11 (2004) 341 (Korean) https://doi.org/10.4150/KPMI.2004.11.4.341
  8. S. J. Hong, T. S. Kim, H. S. Kim, W. T. Kim and B. S. Chun: Mater. Sci. Eng. A, 271 (1999) 469 https://doi.org/10.1016/S0921-5093(99)00317-2
  9. S. J. Hong and B. S. Chun: Mater. Res. Bulletin, 38 (2003) 599 https://doi.org/10.1016/S0025-5408(03)00022-9
  10. S. C. Yoon and H. S. Kim: Mater. Sci. Forum, 503-504 (2006) 221 https://doi.org/10.4028/www.scientific.net/MSF.503-504.221
  11. R. Lapovok, D. Tormus and C. Bettles: Scripta Mater., 58 (2008) 898 https://doi.org/10.1016/j.scriptamat.2008.01.010
  12. M. H. Paydar, M. Reihanian, E. Bagherpour, M. Sharifzadeh, M. Zarinejad and T. A. Dean: Mater. Lett., 62 (2008) 3266 https://doi.org/10.1016/j.matlet.2008.02.038
  13. S. C. Yoon, D. M. Nghiep, S. I. Hong, Z. Horita and H. S. Kim: Key Eng. Mater., 345-346 (2007) 173
  14. S. C. Yoon, P. Quang, S. I. Hong and H. S. Kim: J. Mater. Proc. Tech., 187-188 (2007) 46 https://doi.org/10.1016/j.jmatprotec.2006.11.117
  15. H. K. Oh and J. K. Lee: J. Mech. Working Tech., 11 (1985) 53 https://doi.org/10.1016/0378-3804(85)90112-3
  16. H. K. Oh and J. W. Park: J. Mech. Working Tech., 15 (1987) 119 https://doi.org/10.1016/0378-3804(87)90029-5
  17. S. Shima and M. Oyane: Int. J. Mech. Sci., 18 (1976) 285 https://doi.org/10.1016/0020-7403(76)90030-8
  18. K. Mori, S. Shima and K. Osakada: Bull. JSME, 23 (1980) 516 https://doi.org/10.1299/jsme1958.23.516
  19. SFTC, Deform2D ver. 9.0, www.deform.com
  20. H. S. Kim, M. H. Seo and S. I. Hong: Mater. Sci. Eng. A, 291 (2000) 86 https://doi.org/10.1016/S0921-5093(00)00970-9
  21. S. C. Yoon, M. H. Seo and H. S. Kim: Scripta Mater., 55 (2006) 159 https://doi.org/10.1016/j.scriptamat.2006.03.046