Inhibition of LPS induced iNOS, COX-2 and cytokines expression by salidroside through the $NF{-\kappa}B$ inactivation in RAW 264.7 cells

Salidroside의 RAW 264.7 세포에서 $NF{-\kappa}B$ 불활성화를 통한 LPS에

  • Won, So-Jung (Department of pharmaceutical Biochemistry, College of Pharmacy, Kyung-Hee University) ;
  • Park, Hee-Juhn (Department of Botanical Resources, Sangji University) ;
  • Lee, Kyung-Tae (Department of pharmaceutical Biochemistry, College of Pharmacy, Kyung-Hee University)
  • Published : 2008.06.30

Abstract

In this study, we investigated the anti-inflammatory effects of salidroside (SAL) isolated from the MeOH extract of Acer tegmentosum Maxim heartwood in RAW 264.7 macrophage cells. SAL pretreatment significantly inhibited nitric oxide (NO) and prostaglandin $E_2$ ($PGE_2$) productions in the lipopolysaccharide (LPS)-induced RAW 264.7 cells. Western blot and RT-PCR analyses revealed that SAL inhibited the LPS-induced expressions of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) at the protein and mRNA levels in a concentration-dependent manner. In addition, SAL reduced the release and the mRNA expressions of tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$) and interleukin-6 (IL-6). Furthermore, nuclear factorkappa B ($NF{-\kappa}B$) luciferase reporter assay was performed to know the involvement of SAL in the production of pro-inflammatory cytokines, we confirmed that LPS-induced transcription activity of $NF{-\kappa}B$ was inhibited by SAL. Taken together, our data indicate that anti-inflammatory property of salidroside might be the result from the inhibition of iNOS, COX-2, $TNF-{\alpha}$ and IL-6 expressions via the down-regulation of $NF{-\kappa}B$ activity.

Keywords

References

  1. Brown, K. L., Cosseau, C., Gardy, J. L. and Hancock, R. E. (2007) Complexities of targeting innate immunity to treat infection. Trends. Immunol. 28: 260-266 https://doi.org/10.1016/j.it.2007.04.005
  2. Posadas, I., Terencio, M. C., Guillén, I., Ferrandiz, M. L., Coloma, J., Paya, M., Alcaraz, M. J. (2000) Co-regulation between cyclo-oxygenase-2 and inducible nitric oxide synthase expression in the time-course of murine inflammation. Naunyn Schmiedebergs Arch. Pharmacol. 361: 98-106 https://doi.org/10.1007/s002109900150
  3. Moncada, S., Palmer, R. M., Higgs, E. A. (1991) Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol. Rev. 43: 109-142
  4. Yun, H. Y., Dawson, V. L. and Dawson, T. M. (1996) Neurobiology of nitric oxide. Crit. Rev. Neurobiol. 10: 291-316 https://doi.org/10.1615/CritRevNeurobiol.v10.i3-4.20
  5. Stuehr, H. H. J., Kwon, N. S., Weise, M. and Nathan, C. (1991) Purification of the cytokine-induced macrophage nitric oxide synthase: an FAD- and FMN- containing flavoprotein. Proc. Natl. Sci. USA. 88: 7773-7777
  6. McCartney-Francis, N., Allen, J. B., Mizel, D. E., Albina, J. E., Xie, Q. W., Nathan, C. F. and Wahl, S. M. (1993) Suppression of arthritis by an inhibitor of nitic oxide synthase. J. Exp. Med. 178: 749-754 https://doi.org/10.1084/jem.178.2.749
  7. Weisz, A., Cicatiello, I. and Esumi, H. (1996) Regulation of the mouse inducible-type nitric oxide synthase gene promoter by interferon-gamma, bacterical lipopolysaccharide and NG-monomethyl-L-arginene. Biochem. J. 316: 209-215 https://doi.org/10.1042/bj3160209
  8. Vane, J. R., Botting, R. M. (1998) Mechanism of action of nonsteroidal anti-inflammatory drugs. Am. J. Med. 104: 2S-8S
  9. Vane, J. R., Bakhle, Y. S., Botting, R. M. (1998) Cyclooxygenases 1 and 2. Annu. Rev. Pharmacol. Toxicol. 38: 97-120 https://doi.org/10.1146/annurev.pharmtox.38.1.97
  10. Needleman, P. and Isakson, P. C. (1997) The discovery and function of COX-2. J. Rheumatol. Suppl. 49: 6-8
  11. Seybold, V. S., Jia, Y. P. and Abrahams, L. G. (2003) Cyclooxygenase- 2 contributes to central sensitization in rats with peripheral inflammation. Pain 105: 47-55
  12. Bishop-Bailey, D., Calatayud, S., Warner, T. D., Hla, T. and Mitchell J. A. (2002) Prostaglandins and the regulation of tumor growth. J. Environ. Pathol. Toxicol. Oncol. 21: 93-101
  13. Willeaume, V., Kruys, V., Mijatovic, T. and Huez, G. (1995) Tumor necrosis factor-alpha production induced by viruses and by lipopolysaccharides in macrophages: similarities and differences. J. Inflamm. 46: 1-12
  14. Van Snick, J. (1990) IL-6: an overview. Annu. Rev. Immunol. 8: 253-278 https://doi.org/10.1146/annurev.iy.08.040190.001345
  15. Liu, S.F. and Malik, A.B. (2005) $NF-_{\kappa}B$ activation as a pathological mechanism of septic shock and inflammation. Am. J. Physiol. Lung Cell Mol. Physiol. 290: L622-L645 https://doi.org/10.1152/ajplung.00477.2005
  16. 이창복 (1993) 대한식물도감, 522. 향문사, 서울
  17. 소배근 (1994) 중국본초도감 (3권), 193. 여강출판사, 서울
  18. Jang, S. I., Pae, H. O., Choi, B. M., Oh, G. S., Jeong, S., Lee, H. J., Kim, H. Y., Kang, K. H., Yum, Y. G., Kim, Y. C. and Chung, H. T. (2003) Salidroside from Rhodiola sachalinesis protects neuronal PC12 cells against cytotoxicity induced by $amyloid-{\beta}$‚. Immunopharmacol. Immunotoxicol. 25: 295-304 https://doi.org/10.1081/IPH-120024498
  19. Zhang, Y. and Liu, Y. (2005) Study on effects of salidrosde on lipid peroxidation on oxidative stress in rat hepatic stellate cells. Zhong Yao Cai 28: 794-796
  20. Zhang, X. S., Zhu, B. D., Hung, X. Q. and Chen, Y. F. (2005) Effect of salidroside on bone marrow cell cycle and expression of apoptosis-related proteins in bone marrow cells of bone marrow depressed anemia mice. Sichuan Da Xue Xue Bao Yi Xue Ban 36: 820-823
  21. Wang, S. H., Wang, W. J., Wang, X. F, Chen, W. H. (2004) Effects of salidroside on carbohydrate metabolism and differentiation of 3T3-L1 adipocytes. Zhong Xi Yi He Xue Bao 2: 193-195 https://doi.org/10.3736/jcim20040312
  22. Surh, Y. J., Chun, K. S., Cha, H. H., Han, S. S., Keum, Y. S., Park, K. K. and Lee, S. S. (2001) Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of NF-kappa B activation. Mutat. Res. 480-481: 243-268 https://doi.org/10.1016/S0027-5107(01)00183-X
  23. Lanza, A. M. D., Martinez M. J. A., Matellano, L. F., Carretero, C. R., Castillo, L. V., Sen, A. M. S. and Benito, P. B. (2001) Lignan and phenylpropanoid glycosides from Phillyrea latifolia and their in vitro anti-inflammatory activity. Planta Med. 67: 219-223 https://doi.org/10.1055/s-2001-12004
  24. Iontcheva, I., Amar, S., Zawawi, K. H., Kantarci, A. and Van Dyke, T. E. (2004) Role for moesin in lipopolysaccharidestimulated signal transduction. Infect. Immun. 72: 2312-2320 https://doi.org/10.1128/IAI.72.4.2312-2320.2004
  25. Means, T. K, Golenbock, D. T and Fenton, M. J. The biology of toll-like receptors. (2000) Cytokine Growth Factor Rev. 11: 219-232 https://doi.org/10.1016/S1359-6101(00)00006-X
  26. Chow, J. C., Young, D. W., Golenbock, D. T., Christ, W. J. and Gusovsky, F. (1999). Toll-like receptor-4 mediates lipopolysaccharide-induced signal transduction. J. Biol. Chem. 274: 10689-10692 https://doi.org/10.1074/jbc.274.16.10689
  27. Faure, E., Equils, O., Sieling, P. A., Thomas, L., Zhang, F.X., Kirschning, C. J., Polentarutti, N., Muzio, M. and Arditi, M. (2000) Bacterial lipopolysaccharide activates NF-kappa B through toll-like receptor 4 (TLR-4) in cultured human dermal endothelial cells. J. Biol. Chem. 275: 11058-11063 https://doi.org/10.1074/jbc.275.15.11058
  28. Gomez, P. F., Pillinger, M. H., Attur, M., Marjanovic, N., Dave, M., Park, J., Bingham, C. O., Al-Mussawir, H. and Abramson, S. B. (2005) Resolution of inflammation: prostaglandin E2 dissociates nuclear trafficking of individual NFkappa B subunits (p65, p50) in stimulated rheumatoid synovial fibroblasts. J. Immunol. 175: 6924-6930 https://doi.org/10.4049/jimmunol.175.10.6924
  29. Feldmann, M., Brennan, F. M. and Maini, R. N. (1996) Role of cytokines in rheumatoid arthritis. Annu. Rev. Immunol. 14: 397-440 https://doi.org/10.1146/annurev.immunol.14.1.397
  30. Karin, M. and Ben-Neriah, Y. (2000) Phosphorylation meets ubiquitination: the control of $NF-_{\kappa}B$ activity. Annu. Rev. Immunol. 18: 621-663 https://doi.org/10.1146/annurev.immunol.18.1.621