The effect of UNCL inactivation on the expression of mechanical stress related genes in cultured human PDL fibroblasts

  • Choi, Yong-Seok (Oral Biology Research Institute and The Second stage of BK21, College of Dentistry, Chosun University) ;
  • Jang, Hyun-Sun (Oral Biology Research Institute and The Second stage of BK21, College of Dentistry, Chosun University) ;
  • Lee, Dong-Seol (Dental Research Institute and Department of Oral Histology-Developmental Biology, School of Dentistry, Seoul National University) ;
  • Kim, Heung-Joong (Oral Biology Research Institute and The Second stage of BK21, College of Dentistry, Chosun University) ;
  • Park, Jong-Tae (Oral Biology Research Institute and The Second stage of BK21, College of Dentistry, Chosun University) ;
  • Bae, Hyun-Sook (Department of Dental Hygiene, Namseoul University) ;
  • Park, Joo-Cheol (Dental Research Institute and Department of Oral Histology-Developmental Biology, School of Dentistry, Seoul National University)
  • Published : 2008.06.30

Abstract

A mutation of UNCL, an inner nuclear membrane RNAbinding protein, has been found to eliminate mechanotransduction in Drosophila. UNCL is expressed in human periodontal tissue including in periodontal ligament (PDL) fibroblasts. However, it is unclear how a mechanical stimulus is translated into cellular responses in PDL fibroblasts. The aim of this study was to evaluate the effect of UNCl on mechanical stress related genes in PDL fibroblasts in response to mechanical stress. The mRNA of TGF-$\beta$, COX-2, and MMP-2 was up-regulated after UNCL inactivation in PDL fibroblasts under the compression force. Under the tensile force, inactivation of UNCL decreased the expression of Biglycan, RANKL, MMP-2, and TIMP-2 mRNAs while it increased the expression of TIMP-1. p38-MAPK was expressed in PDL fibroblasts under compression forces whereas phospho-ERK1/2, p65-NFkB, and c-fos were expressed under tension forces. The expression and phosphorylation of the mechanical stress related genes, kinases, and transcription factors were changed according to the types of stress. Furthermore, most of them were regulated by the inactivation of UNCL. This suggests that UNCL is involved in the regulation of mechanical stress related genes through the signaling pathway in PDL fibroblasts.

Keywords

References

  1. Bolcato-Bellemin, A. L., Elkaim, R., Abehsera, A., Fausser, J.L., Haikel, Y. and Tenenbaum, H.: Expression of mRNAs encoding for alpha and beta integrin subunits, MMPs, and TIMPs in stretched human periodontal ligament and gingival fibroblasts. J. Dent. Res. 79: 1712-1716, 2000 https://doi.org/10.1177/00220345000790091201
  2. Carnes, D. L., Maeder, C. L. and Graves, D. T.: Cells with osteoblastic phenotypes can be explanted from human gingival and periodontal ligament. J. Periodontol. 68: 701-707, 1997 https://doi.org/10.1902/jop.1997.68.7.701
  3. Chantalat, S., Courbeyrette, R., Senic-Matuqlia F., Jackson, C. L., Goud, B. and Peyroche, A.: A novel Golgi membrane protein is a partner of the ARF exchange factors Gea1p and Gea2p. Mol. Biol. Cell. 14: 2357-2371, 2003 https://doi.org/10.1091/mbc.E02-10-0693
  4. Evanko, S. P. and Vogel, K. G.: Proteoglycan synthesis in fetal tendon is differentially regulated by cyclic compression in vitro. Arch. Biochem. Biophys. 307: 153-164, 1993 https://doi.org/10.1006/abbi.1993.1574
  5. Fitzgerald, J., Kennedy, D., Viseshakul, N., Cohen, B.N., Mattick, J., Bateman, J.F. and Forsayeth, J.R.: UNCL, the mammalian homologue of UNC-50, is an inner nuclear membrane RNA-binding protein. Brain Res. 877: 110-123, 2000 https://doi.org/10.1016/S0006-8993(00)02692-5
  6. Grabellus, F., Worm, K. and Schmid, K. W.: Induction of the matrix metalloproteinase-2 activation system in arteries by tensile stress. Involvement of the p38 MAP-kinase pathway. Pathol. Res. Pract. 203: 135-143, 2007 https://doi.org/10.1016/j.prp.2007.01.001
  7. Kanzaki H, Chiba M, Sato A, Miyagawa, A., Arai, K., Nukatsuka, S. and Mitani, H.: Cyclical tensile force on periodontal ligament cells inhibits osteoclastogenesis through OPG induction. J. Dent. Res. 85: 457-462, 2006 https://doi.org/10.1177/154405910608500512
  8. Kanzaki, H., Chiba, M., Shimizu, Y. and Mitani, H.: Periodontal ligament cells under mechanical stress induce osteoclastogenesis by receptor activator of nuclear factor kappaB ligand up-regulation via prostaglandin E2 synthesis. J. Bone Miner. Res. 17: 210-220, 2002 https://doi.org/10.1359/jbmr.2002.17.2.210
  9. Kaneko, S., Ohashi, K., Soma, K. and Yanaqishita, M.: Occlusal hypofunction causes changes of proteoglycan content in the rat periodontal ligament. J. Periodontal Res. 36: 9-17, 2001 https://doi.org/10.1034/j.1600-0765.2001.00607.x
  10. Kapur, S., Baylink, D. J. and Lau, K. H.: Fluid flow shear stress stimulates human osteoblast proliferation and differentiation through multiple interacting and competing signal transduction pathways. Bone 32: 241-251, 2003 https://doi.org/10.1016/S8756-3282(02)00979-1
  11. Katz, S., Boland, R. and Santillán, G.: Modulation of ERK 1/2 and p38 MAPK signaling pathways by ATPin osteoblasts: involvement of mechanical stress-activated calcium influx, PKC and Src activation. Int. J. Biochem. Cell Biol. 83: 2082-2091, 2006
  12. Khosla, S.: The OPG/RANKL/RANK system. Endocrinology 142: 5050-5055, 2001 https://doi.org/10.1210/en.142.12.5050
  13. Kim, H. J., Choi, Y. S., Jeong, M. J., Kim, B.O., Lim, S. H., Kim D. K., Kim, C. K. and Park, J. C.: Expression of UNCL during development of periodontal tissue and response of periodontal ligament fibroblasts to mechanical stress in vivo and in vitro. Cell Tissue Res. 327: 25-31, 2007
  14. Lekic, P. and McCulloch, C. A.: Periodontal ligament cell population: the central role of fibroblasts in creating a unique tissue. Anat. Rec. 245: 327-341,1996 https://doi.org/10.1002/(SICI)1097-0185(199606)245:2<327::AID-AR15>3.0.CO;2-R
  15. Liu, L., Igarashi, K. and Kanzaki, H.: Clodronate inhibits PGE(2) production in compressed periodontal ligament cells. J. Dent. Res. 85: 757-760, 2006 https://doi.org/10.1177/154405910608500813
  16. Li, X., and Makarov, S. S.: An essential role of NF-kappaB in the "tumor-like" phenotype of arthritic synoviocytes. Proc. Natl. Acad. Sci. USA. 103: 17432-17437, 2006
  17. Long, P., Liu, F., Piesco, N. P., Kapur, R. and Agarwal, S.: Signaling by mechanical strain involves transcriptional regulation of proinflammatory genes in human periodontal ligament cells in vitro. Bone 30: 547-552, 2000 https://doi.org/10.1016/S8756-3282(02)00673-7
  18. Mada, Y., Miyauchi, M., Oka, H. Kitagawa, M., Sakamoto, K., Iizuka, S., Sato, S., Noguchi, K., Somerman, M.J. and Takata, T.: Effects of endogenous and exogenous prostaglandin E2 on the proliferation and differentiation of a mouse cementoblast cell line (OCCM-30). J. Periodontol. 77:2051-2058, 2006 https://doi.org/10.1902/jop.2006.060148
  19. Majima, T., Marchuk, L. L., Sciore, P., Shrive, N. G., Frank, C. B. and Hart, D. A.: Compressive compared with tensile loading of medial collateral ligament scar in vitro uniquely influences mRNA levels for aggrecan, collagen type II, and collagenase. J. Orthop. Res. 18: 524-531, 2000 https://doi.org/10.1002/jor.1100180403
  20. Miyajima, K., Suzuki, S., Iwata, T., Tanida, K. and Iizuka, T.: Mechanical stress as a stimulant to the production of osteocalcin in osteoblast-like cells. Aichi. Gakuin. Dent. Sci. 4: 1-5, 1991
  21. Mogi, M., Ozeki, N., Nakamura, H. and Togari, A.: Dual roles for NF-kappaB activation in osteoblastic cells by serum deprivation: osteoblastic apoptosis and cell-cycle arrest. Bone. 35: 507-516, 2004 https://doi.org/10.1016/j.bone.2004.03.003
  22. Morgunova, E., Tuuttila, A., Bergmann, U. and Tryggvason, K.: Structural insight into the complex formation of latent matrix metalloproteinase 2 with tissue inhibitor of metalloproteinase 2. Proc. Natl. Acad. Sci. U S A. 99: 7414-7419, 2002
  23. Ogata, T.: Fluid flow-induced tyrosine phosphorylation and participation of growth factor signaling pathway in osteoblastlike cells. J. Cell Biochem. 76: 529-538, 2000 https://doi.org/10.1002/(SICI)1097-4644(20000315)76:4<529::AID-JCB1>3.0.CO;2-5
  24. Ovcharenko D, Jarvis R, Hunicke-Smith S, Kelnar K, Brown D. High-throughput RNAi screening in vitro: from cell lines to primary cells. RNA 2005; 11:985-93, 2005 https://doi.org/10.1261/rna.7288405
  25. Park, J. C., Kim, Y. B., Kim, H. J. Jang, H. S., Kim, H. S., Kim, B. O. and Han, K. Y.: Isolation and characterization of cultured human periodental ligament fibroblast-specific cDNAs. Biochem. Biophys. Res. Commun. 282: 1145-1153, 2001 https://doi.org/10.1006/bbrc.2001.4694
  26. Shimizu, N., Ozawa, Y., Yamaguchi, M., Goseki, T., Ohzeki, K. and Abiko, Y.: Induction of COX-2 expression by mechanical tension force in human periodontal ligament cells. J. Periodontol. 69: 670-677, 1998 https://doi.org/10.1902/jop.1998.69.6.670
  27. Takahashi, I., Nishimura, M., Onodera, K., Bae, J. W., Mitani, H., Okazaki, M., Sasano, Y. and Mitani, H.: Expression of MMP-8 and MMP-13 genes in the periodontal ligament during tooth movement in rats. J. Dent. Res. 82: 646-651, 2003 https://doi.org/10.1177/154405910308200815
  28. Tasevski, V., Sorbetti, J. M., Chiu, S. S., Shrive, N. G. and Hart, D. A.: Influence of mechanical and biological signals on gene expression in human MG-63 cells: evidence for a complex interplay between hydrostatic compression and vitamin D3 or TGF-beta1 on MMP-1 and MMP-3 mRNA levels. Biochem. Cell Biol. 83: 96-107, 2005 https://doi.org/10.1139/o04-124
  29. Tsuji, K., Uno, K., Zhang, G. X. and Tamura, M.: Periodontal ligament cells under intermittent tensile stress regulate mRNA expression of osteoprotegerin and tissue inhibitor of matrix metalloprotease-1 and -2. J. Bone Miner. Metab. 22: 94-103, 2004 https://doi.org/10.1007/s00774-003-0456-0
  30. Wilde, J., Yokozeki, M., Terai, k., Kudo, A. and Moriyama, K.: The divergent expression of periostin mRNA in the periodontal ligament during experimental tooth movement. Cell Tissue Res. 312: 345-351, 2003 https://doi.org/10.1007/s00441-002-0664-2
  31. Yamaguchi, M. and Kasai, K.: Inflammation in periodontal tissues in response to mechanical forces. Arch. Immunol. Ther. Exp. (Warsz) 53: 388-398, 2005