혼잡한 환경에 적합한 적응적인 배경모델링 방법

Adaptive Background Modeling for Crowded Scenes

  • 이광국 (한양대학교 전자컴퓨터통신공학과) ;
  • 송수한 (삼성전자 디지털미디어총괄 디지털프린팅사업부) ;
  • 가기환 (한양대학교 전자컴퓨터통신공학과) ;
  • 윤자영 (한양대학교 건축환경공학과) ;
  • 김재준 (한양대학교 건축공학부) ;
  • 김회율 (한양대학교 전자통신컴퓨터공학부)
  • 투고 : 2008.01.25
  • 심사 : 2008.03.25
  • 발행 : 2008.05.31

초록

기존의 배경 모델링 방법은 배경 모델의 반복적 갱신(recursive update)으로 인해 배경보다 객체가 더 자주 등장하는 혼잡한 환경에서는 정확한 배경 모델링을 생성하기 어려운 문제를 지니고 있다. 본 논문은 이러한 기존 방법의 문제를 해결하기 위해 기존의 혼합 Gaussian 모델을 기반으로 하는 적응적 배경 모델링 방법을 제안한다. 제안한 방법은 영상 내 전경 영역의 비율에 따라 배경 모델의 학습 비율을 적응적으로 조절한다. 따라서, 혼잡 상황에서는 배경 모델의 갱신을 억제하여 배경 모델을 잘 유지시키는 것이 가능하다. 실험을 통해 제안한 방법이 일반적인 상황의 영상에서는 기존 방법과 유사한 정확도를 보이지만 혼잡한 상황에서는 기존 방법과 비교하여 배경 제거를 효과적으로 수행하는 것을 확인하였으며, 또 정확도 측정 결과 혼잡한 상황의 영상에서 기존 방법과 비교하여 F 값이 5-10% 가량 향상함을 확인하였다.

Due to the recursive updating nature of background model, previous background modeling methods are often perturbed by crowd scenes where foreground pixels occurs more frequently than background pixels. To resolve this problem, an adaptive background modeling method, which is based on the well-known Gaussian mixture background model, is proposed. In the proposed method, the learning rate of background model is adaptively adjusted with respect to the crowdedness of the scene. Consequently, the learning process is suppressed in crowded scene to maintain proper background model. Experiments on real dataset revealed that the proposed method could perform background subtraction effectively even in crowd situation while the performance is almost the same to the previous method in normal scenes. Also, the F-measure was increased by 5-10% compared to the previous background modeling methods in the video of crowded situations.

키워드