References
- Bouzoubaa, N. and Lachemi, M. (2001), "Self-compacting concrete incorporating high volumes of class F fly ash Preliminary results", Cement Concrete Res., 31, 413-420. https://doi.org/10.1016/S0008-8846(00)00504-4
- Bui, V.K., Akkaya, Y. and Shah, S.P. (2002), "Rheological model for self-consolidating concrete", ACI Mater. J., 99(6), 549-559.
- Chengju, G. (1989), "Maturity of concrete: Method for predicting early stage strength", ACI Mater. J., 86(4), 341-353.
- Dias, W.P.S. and Pooliyadda, S.P. (2001), "Neural networks for predicting properties of concretes with Admixtures", Constr. Build. Mater., 15, 371-379. https://doi.org/10.1016/S0950-0618(01)00006-X
- Dibike, Y.B., Velickov, S., Solomatine, D.P. and Abbott, M.B. (2001), "Model induction with support vector machines: Introduction and applications", J. Comput. Civ. Eng., ASCE, 15, 208-216. https://doi.org/10.1061/(ASCE)0887-3801(2001)15:3(208)
- Ghezal, A. and Khayat, K.H. (2002), "Optimizing self-consolidating concrete with limestone filler by using statistical factorial design methods", ACI Mater. J., 99(3), 264-268.
- Hong-Guang, N. and Ji-Zong, W. (2000), "Prediction of compressive strength of concrete by neural networks" Cement Concrete Res., 3(8), 1245-1250.
- Kasperkiewicz, J., Rach, J. and Dubrawski, A. (1995), "HPC strength prediction using Artificial neural network", J. Compu. Civ. Engg., 9(4), 279-284. https://doi.org/10.1061/(ASCE)0887-3801(1995)9:4(279)
- Kim, J.I., Kim, D. K., Feng, M.Q. and Yazdani, F. (2004), "Application of Neural Networks for Estimation of Concrete Strength", J. Mater. Civ. Eng., 16(3), 257-264. https://doi.org/10.1061/(ASCE)0899-1561(2004)16:3(257)
- Ji, T. and Lin, X.J. (2006), "A mortar mix proportion design algorithm based on artificial neural networks". Computers and Concrete, 3(5), 357-373. https://doi.org/10.12989/cac.2006.3.5.357
- Lai, S. and Serra, M. (1997), "Concrete strength prediction by means of neural network", Constr. Build. Mater., 11(2), 93-98. https://doi.org/10.1016/S0950-0618(97)00007-X
- Lee, S. (2003), "Prediction of concrete strength using artificial neural networks", Eng. Struct., 25(7), 849-857. https://doi.org/10.1016/S0141-0296(03)00004-X
- Lee, J.J., Kim, D.K., Chang, S.K., and Lee, J.H. (2007), "Application of support vector regression for the prediction of concrete strength", Comput. Concrete, 4(4), 299-316. https://doi.org/10.12989/cac.2007.4.4.299
- Nagamoto, N. and Ozawa, K. (1997), "Mixture properties of self-compacting, High performance concrete" Third CANMET/ ACI International Conference on Design and Materials and Recent Advances in Concrete Technology, SP-172, V.M.Malthotra, ed., American Concrete Institute, Farmington Hills, Mich., 623-627.
- Nehdi, M., Chabib, H.E. and Naggar, M.H.E. (2001), "Predicting performance of self-compacting concrete mixtures using artificial neural networks" ACI Mater. J., 98(5), 394-401.
- Oh, J.W., Kim, J.T. and Lee, G.W. (1999), "Application of neural networks for proportioning of concrete mixes", ACI Mater. J., 96(1), 61-67.
- Okamura, H. (1997), "Self-compacting concrete-Ferguson Lecture for 1996", Concr. Int., 19(7), 50-54.
- Oluokun, F.A., Burdette, E.G. and Deatherage J.H. (1990), "Early-age concrete strength prediction by maturity - Another look", ACI Mater. J., 87(6), 565-572.
- Pal, M. and Mather, PM. (2003), "Support vector classifiers for land cover classification", Map India 2003, New Delhi, 28-31 January, www.gisdevelopment.net/technology/rs/ pdf/23.pdf.
- Patel, R., Hossain, K.M.A., Shehata, M., Bouzoubaa, N. and Lachemi, M. (2004), "Development of statistical models for mixture design of high-volume fly ash self-consolidation concrete", ACI Mater. J., 101(4), 294-302.
- Platt, J.C. (1999), "Fast training of support vector machines using sequential minimal optimization". Advances in Kernels Methods: Support vector machines, Scholkopf, B, Burges, C. and Smola, A. (Eds.), Cambridge, MA: MIT Press.
- Popovics, S. (1998), " History of a mathematical model for strength development of Portland cement concrete". ACI Mater. J., 95(5), 593-600.
- Ren, L.Q. and Zhao, Z.Y. (2002), "An optimal neural network and concrete strength modeling". J. Adv. Eng. Software, 33, 117-130. https://doi.org/10.1016/S0965-9978(02)00005-4
- Sebastia, M., Olmo, I.F., and Irabien, A. (2003), "Neural network prediction of unconfined compressive strength of coal fly ash-cement mixtures", Cement Concrete Res., 33, 1137-1146. https://doi.org/10.1016/S0008-8846(03)00019-X
- Smola, A.J. (1996), "Regression estimation with support vector learning machines", Master's Thesis, Technische Universitat Munchen, Germany.
- Snell, L.M., Van Roekel, J. and Wallace, N.D. (1989), "Predicting early concrete strength", Concrete Int., 11(12), 43-47.
- Sonebi, M. (2004a), "Application of statistical models in proportioning medium strength self-consolidating concrete" ACI Mater. J., 101(5), 339-346.
- Sonebi, M. (2004b), "Medium strength self-compacting concrete containing fly ash: Modelling using factorial experimental plans", Cement Concrete Res., 34(7), 1199-1208. https://doi.org/10.1016/j.cemconres.2003.12.022
- Witten, I.H. and Frank, E. (1999), Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations. Morgan Kaufmann, San Francisco.
- Vapnik, V.N. (1995), The Nature of Statistical Learning Theory, Springer-Verlag, New York.
- Yeh, I-Cheng. (1998a), "Modeling concrete strength using augment-neuron network", J. Mater. Civ. Eng., 10(4), Nov.
- Yeh, I-Cheng. (1998b), "Modeling of strength of high-performance concrete using artificial neural networks", Cement Concrete Res., 28(12), 1797-1808. https://doi.org/10.1016/S0008-8846(98)00165-3
- Yeh, I-Cheng. (1999), "Design of high-performance concrete mixture using neural networks and nonlinear programming". , J. Comput. Civ. Eng., 13(1), Jan.
- Yeh, I-Cheng. (2008), "Prediction of workability of concrete using design of experiments for mixtures". Comput. Concrete, 5(1), 1-20. https://doi.org/10.12989/cac.2008.5.1.001
Cited by
- Support vector machines in structural engineering: a review vol.21, pp.3, 2015, https://doi.org/10.3846/13923730.2015.1005021
- Establishing a cost-effective sensing system and signal processing method to diagnose preload levels of ball screws vol.28, 2012, https://doi.org/10.1016/j.ymssp.2011.10.004
- A thorough study on the effect of red mud, granite, limestone and marble slurry powder on the strengths of steel fibres-reinforced self-consolidation concrete: Experimental and numerical prediction vol.44, pp.None, 2008, https://doi.org/10.1016/j.jobe.2021.103398