DOI QR코드

DOI QR Code

A parametric study of the meso-scale modelling of concrete subjected to cyclic compression

  • Received : 2007.11.01
  • Accepted : 2008.04.01
  • Published : 2008.08.25

Abstract

The present parametric study deals with the meso-scale modelling of concrete subjected to cyclic compression, which exhibits hysteresis loops during unloading and reloading. Concrete is idealised as a two-dimensional three-phase composite made of aggregates, mortar and interfacial transition zones (ITZs). The meso-scale modelling approach relies on the hypothesis that the hysteresis loops are caused by localised permanent displacements, which result in nonlinear fracture processes during unloading and reloading. A parametric study is carried out to investigate how aggregate density and size, amount of permanent displacements in the ITZ and the mortar, and the ITZ strength influence the hysteresis loops obtained with the meso-scale modelling approach.

Keywords

References

  1. Aurenhammer, F. (1991), "Voronoi diagrams - a survey of a fundamental geomtric data structure", ACM Computing Surveys, 23, 345-405. https://doi.org/10.1145/116873.116880
  2. Bolander, J. E. and Saito, S. (1998), "Fracture analysis using spring networks with random geometry", Eng. Fract. Mech., 61, 569-591. https://doi.org/10.1016/S0013-7944(98)00069-1
  3. Bolander, J. E. and Sukumar, N. (2005), "Irregular lattice model for quasistatic crack propagation", Physical Review B, 71.
  4. Budiansky, B. and O'Connell, R. J. (1976), "Elastic moduli of a cracked solid", Int. J. Solids Struct., 12(2), 81-97. https://doi.org/10.1016/0020-7683(76)90044-5
  5. Carpinteri, A., Cornetti, P. and Puzzi, S. (2004), "A stereological analysis of aggregate grading and size effect on concrete tensile strength", Int. J. Fracture, 128, 233-242. https://doi.org/10.1023/B:FRAC.0000040986.00333.86
  6. Cornelissen, H. A. W., Hordijk, D. A. and Reinhardt, H. W. (1986), "Experimental determination of crack softening characteristics of normalweight and lightweight concrete", HERON, 31(2), 45-56.
  7. Dormieux, L., Kondo, D. and Ulm, F. J. (2006), Microporomechanics. Wiley.
  8. Grassl, P. and Rempling, R. (2008), "A damage-plasticity interface approach to the meso-scale modeling of subjected to cyclic compressive loading", doi:10.1016/j.engfracmech.2008.06.005.
  9. Heukamp, F. H., Lemarchand, E. and Ulm, F. J. (2005), "The effect of interfacial properties on the cohesion of concrete highly filled composite materials", Int. J. Solids Struct., 42(1), 287-305. https://doi.org/10.1016/j.ijsolstr.2004.07.007
  10. Jonathan Richard Shewchuk. (1996), Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator. In Ming C. Lin and Dinesh Manocha, editors, Applied Computational Geometry: Towards Geometric Engineering, volume 1148 of Lecture Notes in Computer Science, pages 203-222. Springer-Verlag, May 1996. From the First ACM Workshop on Applied Computational Geometry.
  11. Karsan, I. D. and Jirsa, J. O. (1969), "Behavior of concrete under compressive loadings", J. Struct. Divi., ASCE, 95, 2543-2563.
  12. Kawai, T. (1977), "New element models in discrete structural analysis", J. Society Naval Architecture Japan, 141, 187-193.
  13. Lilliu, G. and van Mier, J. G. M. (2007), "3D lattice type fracture model for concrete", Eng. Fract. Mech., 70, 927-941.
  14. Morikawa, O., Sawamota, Y. and Kobayashi, N. (1993), "Local fracture analysis of a reinforced concrete slab by the discrete element method", In MIT Press, editor, Proceedings of the 2nd International Conf. on Discrete element methods, pages 275-286, held in Cambridge, MA, USA.
  15. Pandol, A., Krysl, P. and Ortiz, M. (1999), "Finite element simulation of ring expansion and fragmentation: The capturing of length and time scales through cohesive models of fracture", Int. J. Fracture, 95, 279-297. https://doi.org/10.1023/A:1018672922734
  16. Patzak, B. (1999), "Object oriented finite element modeling", Acta Polytechnica, 39, 99-113.
  17. Patzak, B. and Bittnar, Z. (2001), "Design of object oriented finite element code", Adv. Eng. Software, 32, 759-767. https://doi.org/10.1016/S0965-9978(01)00027-8
  18. Prado, E. P. and van Mier, J. G. M. (2007), "Effect of particle structure on mode I fracture process in concrete", Eng. Fract. Mech., 70, 927-941.
  19. Ragueneau, F., La Norderie, C. and Mazars, J. (2000), "Damage model for concrete-like materials coupling cracking and friction, contribution towards structural damping: first uniaxial applications", Mech. Cohesive-Frictional Mater., 5, 607-625.
  20. Sinha, B. P., Gerstle, K. H. and Tulin, L. G. (1964), "Stress-strain relations for concrete under cyclic loading", J. American Concrete Institute, 61, 195-211.
  21. van Mier, J. G. M. (1984), "Strain-softening of concrete under multiaxial loading conditions", PhD thesis, Technical University of Eindhoven, Eindhoven, The Netherlands.
  22. Voyiadjis, G. Z. and Abu-Lebdeh, T. M. (1994), "Plasticity model for concrete using the bounding surface concept", Int. J. Plasticity, 10, 1-24. https://doi.org/10.1016/0749-6419(94)90051-5
  23. Yang, B. L., Dafalias, Y. F. and Herrmann, L. P. (1985), "A bounding surface plasticity model for concrete", J. Eng. Mech. -ASCE, 111, 359-380. https://doi.org/10.1061/(ASCE)0733-9399(1985)111:3(359)
  24. Zubelewicz, A. and Bazant, Z. P. (1987), "Interface modeling of fracture in aggregate composites", J. Eng. Mech., ASCE, 113, 1619-1630. https://doi.org/10.1061/(ASCE)0733-9399(1987)113:11(1619)

Cited by

  1. Meso-scale approach to modelling the fracture process zone of concrete subjected to uniaxial tension vol.47, pp.7-8, 2010, https://doi.org/10.1016/j.ijsolstr.2009.12.010
  2. A mesoscale model based on Monte-Carlo method for concrete fracture behavior study vol.55, pp.12, 2012, https://doi.org/10.1007/s11431-012-5035-y
  3. Domain information transfer method and its application in quasi-brittle failure analysis vol.11, pp.12, 2008, https://doi.org/10.1177/1687814019895736
  4. Multiscale Analysis of Concrete Damage and Crack Propagation Under High Cycle Loading vol.17, pp.1, 2020, https://doi.org/10.1142/s0219876218440073