References
- Adams, M. (2002), "Evaluation of three unstructured multigrid methods on 3D finite element problems in solid mechanics", Int. J. Numer. Meth. Eng., 55, 519-534 https://doi.org/10.1002/nme.506
- Ashcraft, C. and Grimes, R. (1999). "SPOOLES: An object-oriented sparse matrix library", 9th SIAM Conference on Parallel Processing for Scientific Computing, San Antonio, Texas. http://citeseer.ist.psu.edu/ ashcraft99spooles.html
- Brenner, S.C. (1999), "The condition number of the Schur complement in domain decomposition", Numer. Math., 83, 187-203 https://doi.org/10.1007/s002110050446
- Bulgakov, V.E. (1995), "High performance of multi-level iterative aggregation solver for large finite-element structural analysis problems", Int. J. Numer. Meth. Eng., 38, 3529-3544 https://doi.org/10.1002/nme.1620382010
- Bulgakov, V.E (1997), "The use of the multi-level iterative aggregation method in 3-d finite element analysis of solid, truss, frame and shell structure", Comp. Struct., 63(5), 927-938 https://doi.org/10.1016/S0045-7949(96)00388-4
- Carvalho, L.M., Giraud, L. and Le Tallec, P. (2001), "Algebraic two-level preconditioners for the Schur Complement method", SIAM J. Sci. Comput., 22(6), 1987-2005 https://doi.org/10.1137/S1064827598340809
- Fish, J. and Belsky, V. (1997), "Generalized aggregation multi-level solver", Int. J. Numer. Meth. Eng., 40, 4341-4361 https://doi.org/10.1002/(SICI)1097-0207(19971215)40:23<4341::AID-NME261>3.0.CO;2-C
- Karypis, G. and Kumar, V. (1995), METIS: unstructured graph partitioning and sparse matrix ordering system, Tech. rep., Department of Computer Science, University of Minnesota, available on the WWW at URL http:// www-users.cs.umn.edu/~karypis/metis/metis/index.html
- Ko. J.H. and Lee, B.C. (2006), "Preconditioning Schur complement matrices based on an aggregation multigrid method for shell structures", Comp. Struct., 84(29-30), 1853-1865 https://doi.org/10.1016/j.compstruc.2006.08.014
- Ko, J.H. (2004), "A preconditioner for schur complement matrices based on aggregation multigrid method in linear finite element analysis," Ph. D. dissertation, KAIST
- Saad, Y. and Sosonkina, M. (1999), "Distributed schur complement technique for general sparse linear systems", SIAM J. Sci. Comput., 21(4), 1337-1356 https://doi.org/10.1137/S1064827597328996
- Saad, Y. (1996), Iterative Methods for Sparse Linear System, New York: PWS publishing
- Saint-Georges, P., Warzee, G., Notay, Y. and Beauwens, R. (1999), "Problem-dependent preconditioners for iterative solvers in FE elastostatics", Comp. Struct., 73, 33-42 https://doi.org/10.1016/S0045-7949(98)00277-6
- Sonneveld, P. (1989), "CGS, a fast Lanczos-type solver for nonsymmetric linear system", SIAM J. Sci. Statistical Comput., 10(1), 36-52 https://doi.org/10.1137/0910004
- Vanek, P., Mandel, J. and Brezina, M. (1996), "Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems", Computing, 56, 179-196 https://doi.org/10.1007/BF02238511