References
- Balasubramanian, T.S. and Subramanian, G. (1985), 'On the performance of a four- degree-of-freedom per node element for stepped beam analysis and higher frequency estimation', J. Sound Vib., 99(4), 563-567 https://doi.org/10.1016/0022-460X(85)90541-3
- Balasubramanian, T.S., Subramanian, G. and Ramani, T.S. (1990), 'Significance of very high order derivatives as nodal degrees of freedom in stepped beam vibration analysis', J. Sound Vib., 137(2), 353-356 https://doi.org/10.1016/0022-460X(90)90803-8
- Chen, D.W. and Wu, J.S. (2002), 'The exact solutions for the natural frequencies and mode shapes of non-uniform beams with multiple spring-mass systems', J. Sound Vib., 255(2), 299-322 https://doi.org/10.1006/jsvi.2001.4156
- Chen, D.W. (2003), 'The exact solutions for the natural frequencies and mode shapes of non-uniform beams carrying multiple various concentrated elements', Struct. Eng. Mech., 16(2), 153-176 https://doi.org/10.12989/sem.2003.16.2.153
- De Rosa, M.A. (1994), 'Free vibrations of stepped beams with elastic ends', J. Sound Vib., 173(4), 557-563 https://doi.org/10.1006/jsvi.1994.1246
- De Rosa, M.A., Belles, P.M. and Maurizi, M.J. (1995), 'Free vibrations of stepped beams with intermediate elastic supports', J. Sound Vib., 181(5), 905-910 https://doi.org/10.1006/jsvi.1995.0177
- Hamdan, M.N. and Abdel Latif, L. (1994), 'On the numerical convergence of discretization methods for the free vibrations of beams with attached inertia elements', J. Sound Vib., 169(4), 527-545 https://doi.org/10.1006/jsvi.1994.1032
- Jang, S.K. and Bert, C.W. (1989), 'Free vibrations of stepped beams: exact and numerical solutions', J. Sound Vib., 130(2), 342-346 https://doi.org/10.1016/0022-460X(89)90561-0
- Jang, S.K. and Bert, C.W. (1989), 'Free vibrations of stepped beams: higher mode frequencies and effects of steps on frequency', J. Sound Vib., 132(1), 164-168 https://doi.org/10.1016/0022-460X(89)90882-1
- Ju, F., Lee, H.P. and Lee, K.H. (1994), 'On the free vibration of stepped beams', Int. J. Solids Struct., 31, 3125-3137 https://doi.org/10.1016/0020-7683(94)90045-0
- Laura, P.A.A., Rossi, R.E., Pombo, J.L. and Pasqua, D. (1994), 'Dynamic stiffening of straight beams of rectangular cross-section: a comparison of finite element predictions and experimental results', J. Sound Vib., 150(1), 174-178 https://doi.org/10.1016/0022-460X(91)90413-E
- Lee, J. and Bergman, L.A. (1994), 'Vibration of stepped beams and rectangular plates by an elemental dynamic flexibility method', J. Sound Vib., 171(5), 617-640
- Lin, H.Y. and Tsai, Y.C. (2005), 'On the natural frequencies and mode shapes of a uniform multi-span beam carrying multiple point masses', Struct. Eng. Mech., 21(3), 351-367 https://doi.org/10.12989/sem.2005.21.3.351
- Lin, H.Y. and Tsai, Y.C. (2006), 'On the natural frequencies and mode shapes of a multiple-step beam carrying a number of intermediate lumped masses and rotary inertias', Struct. Eng. Mech., 22(6), 701-717 https://doi.org/10.12989/sem.2006.22.6.701
- Lin, H.Y. and Tsai, Y.C. (2007), 'Free vibration analysis of a uniform multi-span beam carrying multiple spring-mass systems', J. Sound Vib., 302(3), 442-456 https://doi.org/10.1016/j.jsv.2006.06.080
- Maurizi, M.J. and Belles, P.M. (1994), 'Natural frequencies of one-span beams with stepwise variable cross-section', J. Sound Vib., 168(1), 184-188 https://doi.org/10.1006/jsvi.1993.1399
- Naguleswaran, S. (2002a), 'Natural frequencies, sensitivity and mode shape details of an Euler-Bernoulli beam with one-step change in cross-section and with ends on classical supports', J. Sound Vib., 252(4), 751-767 https://doi.org/10.1006/jsvi.2001.3743
- Naguleswaran, S. (200b), 'Vibration of an Euler-Bernoulli beam on elastic end supports and with up to three step changes in cross-section', Int. J. Mech. Sci., 44, 2541-2555 https://doi.org/10.1016/S0020-7403(02)00190-X
- Subramanian, G. and Balasubramanian, T.S. (1985), 'Beneficial effects of steps on the free vibration characteristics of beams', J. Sound Vib., 118(3), 555-560 https://doi.org/10.1016/0022-460X(87)90373-7
- Wu, J.S. and Chou, H.M. (1998), 'Free vibration analysis of a cantilever beam carrying any number of elastically mounted point masses with the analytical-and-numerical-combined method', J. Sound Vib., 213(2), 317-332 https://doi.org/10.1006/jsvi.1997.1501
- Wu, J.S. and Chou, H.M. (1999), 'A new approach for determining the natural frequencies and mode shapes of a uniform beam carrying any number of sprung masses', J. Sound Vib., 220(3), 451-468 https://doi.org/10.1006/jsvi.1998.1958
Cited by
- Simulations and Experiments on Vibration Control of Aerospace Thin-Walled Parts via Preload vol.2017, 2017, https://doi.org/10.1155/2017/8135120
- An exact solution for free vibrations of a non-uniform beam carrying multiple elastic-supported rigid bars vol.34, pp.4, 2010, https://doi.org/10.12989/sem.2010.34.4.399
- Vibration of an Offshore Structure Having the Form of a Hollow Column Partially Filled with Multiple Fluids and Immersed in Water vol.2012, 2012, https://doi.org/10.1155/2012/158983
- Analytical Solution for Whirling Speeds and Mode Shapes of a Distributed-Mass Shaft With Arbitrary Rigid Disks vol.81, pp.3, 2013, https://doi.org/10.1115/1.4024670
- Effects of geometric parameters on in-plane vibrations of two-stepped circular beams vol.42, pp.2, 2012, https://doi.org/10.12989/sem.2012.42.2.131
- An efficient approach for whirling speeds and mode shapes of uniform and nonuniform Timoshenko shafts mounted by arbitrary rigid disks vol.2, pp.7, 2008, https://doi.org/10.1002/eng2.12183