DOI QR코드

DOI QR Code

OPTIMAL CONTROL PROBLEMS FOR SEMILINEAR EVOLUTION EQUATIONS

  • Jeong, Jin-Mun (Division of Mathematical Sciences Pukyong National University) ;
  • Kim, Jin-Ran (Division of Mathematical Sciences Pukyong National University) ;
  • Roh, Hyun-Hee (Division of Mathematical Sciences Pukyong National University)
  • 발행 : 2008.05.31

초록

This paper deals with the existence of optimal controls and maximal principles for semilinear evolution equations with the nonlinear term satisfying Lipschitz continuity. We also present the necessary conditions of optimality which are described by the adjoint state corresponding to the linear equations without a condition of differentiability for nonlinear term.

키워드

참고문헌

  1. J. P. Aubin, Un theoreme de compasite, C. R. Acad. Sci. 256 (1963), 5042-5044
  2. A. V. Balakrishnan, A computational approach to the maximum principle, J. Comput. System Sci. 5 (1971), 163-191 https://doi.org/10.1016/S0022-0000(71)80032-6
  3. B. Blackadar, K-Theory for Operator Algebras, Mathematical Sciences Research Institute Publications, 5. Springer-Verlag, New York, 1986
  4. G. Di Blasio, K. Kunisch, and E. Sinestrari, L2-regularity for parabolic partial integrodifferential equations with delay in the highest-order derivatives, J. Math. Anal. Appl. 102 (1984), no. 1, 38-57 https://doi.org/10.1016/0022-247X(84)90200-2
  5. J. M. Jeong, Y. C. Kwun, and J. Y. Park, Approximate controllability for semilinear retarded functional-differential equations, J. Dynam. Control Systems 5 (1999), no. 3, 329-346 https://doi.org/10.1023/A:1021714500075
  6. S. Nakagiri, Optimal control of linear retarded systems in Banach spaces, J. Math. Anal. Appl. 120 (1986), no. 1, 169-210 https://doi.org/10.1016/0022-247X(86)90210-6
  7. N. S. Papageorgiou, Existence of optimal controls for nonlinear systems in Banach spaces, J. Optim. Theory Appl. 53 (1987), no. 3, 451-459 https://doi.org/10.1007/BF00938949
  8. N. S. Papageorgiou, On the optimal control of strongly nonlinear evolution equations, J. Math. Anal. Appl. 164 (1992), no. 1, 83-103 https://doi.org/10.1016/0022-247X(92)90146-5
  9. H. Tanabe, Equations of Evolution, Monographs and Studies in Mathematics, 6. Pitman (Advanced Publishing Program), Boston, Mass.-London, 1979

피인용 문헌

  1. Mild Solution and Fractional Optimal Control of Semilinear System with Fixed Delay vol.174, pp.1, 2017, https://doi.org/10.1007/s10957-015-0828-3