$CF(2^m)$상의 LSD 우선 곱셈을 위한 새로운 시스톨릭 어레이

A New Systolic Array for LSD-first Multiplication in $CF(2^m)$

  • 김창훈 (대구대학교 컴퓨터.IT공학부) ;
  • 남인길 (대구대학교 컴퓨터.IT공학부)
  • 발행 : 2008.04.30

초록

본 논문에서는 암호 응용을 위한 $CF(2^m)$상의 새로운 디지트 시리얼 시스톨릭 곱셈기를 제안한다. 제안된 곱셈기는 연속적인 입력 데이터에 대해 ${\lceil}m/D{\rceil}$ 클럭 사이클마다 곱셈 결과를 출력한다. 여기서 D는 선택된 디지트 크기이다. 기존에 제안된 구조들은 선형의존성 때문에 디지트 크기 D가 증가하면 최대 처리기 지연시간 역시 선형으로 증가하지만 제안된 곱셈기는 이진트리 형태의 내부 구조를 가지기 때문에 D에 대해 로그단위로 증가한다. 따라서 제안된 구조는 기존에 제안된 디지트 시리얼 시스톨릭 곱셈기에 비해 계산지연을 상당히 감소시킨다. 뿐만 아니라 제안된 곱셈기는 규칙성, 모듈성, 단방향 신호 흐름의 특성을 가지기 때문에 VLSI 구현에 매우 적합하다.

This paper presents a new digit-serial systolic multiplier over $CF(2^m)$ for cryptographic applications. When input data come in continuously, the proposed array produces multiplication results at a rate of one every ${\lceil}m/D{\rceil}$ clock cycles, where D is the selected digit size. Since the inner structure of the proposed array is tree-type, critical path increases logarithmically proportional to D. Therefore, the computation delay of the proposed architecture is significantly less than previously proposed digit-serial systolic multipliers whose critical path increases proportional to D. Furthermore, since the new architecture has the features of regularity, modularity, and unidirectional data flow, it is well suited to VLSI implementations.

키워드

참고문헌

  1. R. E. Blahut, Theory and Practice of Error Control Codes, Reading, MA: Addison Wesley, 1983
  2. I. F. Blake, G. Seroussi, and N. P. Smart, Elliptic Curves in Cryptography, Cambridge University Press, 1999
  3. S. K. Jain, L. Song, and K. K. Parhi, "Efficient Semisystolic Architectures for Finite-Field Arithmetic," IEEE Trans. VLSI Syst., Vol.6, No.1, pp.101-113, Mar. 1998 https://doi.org/10.1109/92.661252
  4. T. Zhang and K. K. Parhi, "Systematic Design Approach of Mastrovito Multipliers over," Proc. of the 2000 IEEE Workshop on Signal Processing Systems (SiPS): Design and Implementation, Lafayette, LA, pp.507-506, Oct. 2000
  5. C. S. Yeh, I. S. Reed, and T. K. Trung, "Systolic Multipliers for Finite Fields," IEEE Trans. Comput., Vol.C-33, No.4, pp.357 -360, Mar. 1984 https://doi.org/10.1109/TC.1984.1676441
  6. C. L. Wang and J. L. Lin, "Systolic Array Implementation of Multipliers for Finite Field$GF(2^m)$," IEEE Trans. Circuits and Syst., Vol.38, No.7, pp.796-800, July 1991 https://doi.org/10.1109/31.135751
  7. G. Orlando and C. Paar, "A Super-Serial Galois Fields Multiplier for FPGAs and its Application to Public-Key Algorithms," Proc. of the 7th Annual IEEE Symposium on Field Programmable Computing Machines, FCCM'99, Napa Valley, California, pp.232-239, April. 1999
  8. M. A. Hasan and V. K. Bhargava, "Bit-Serial Systolic Divider and Multiplier for Finite Fields $GF(2^m)$," IEEE Trans. Comput., Vol.41, No.8, pp.972-980, Aug. 1992 https://doi.org/10.1109/12.156540
  9. W. C. Tsai and S. J. Wang, "Two Systolic Architectures for Multiplication in $GF(2^m)$," IEE Proc. Comput. Digit. Tech., Vol.147, No.6, pp.375-382, Nov. 2000
  10. C. Paar, P. Fleischmann, and P. Soria-Rodriguez, "Fast Arithmetic for Public-Key Algorithms in Galois Fields with Composite Exponents", IEEE Tans. Comput., Vol.48, No.10, pp.1025-1034, Oct. 1999 https://doi.org/10.1109/12.805153
  11. L. Song and K. K. Parhi, "Low Energy Digit-Serial/Parallel Finite Field Multipliers," J. VLSI Signal Processing, Vol.19, No.2, pp.149-166, June 1998 https://doi.org/10.1023/A:1008013818413
  12. J. H. Guo and C. L. Wang, "Digit-Serial Systolic Multiplier for Finite Field $GF(2^m)$," IEE Proc. Comput. Digit. Tech., Vol.145, No.2, pp.143-148, Mar. 1998 https://doi.org/10.1049/ip-cdt:19981906
  13. C.H. Kim, S.D. Han and C.P. Hong, "An Efficient Digit-Serial Systolic Multiplier for Finite Fields $GF(2^m)$", Proc. on 14th Annual IEEE International Conference of ASIC/SOC, pp.361-365, 2001
  14. M.C. Mekhallalati, A.S. Ashur, and M.K. Ibrahim, "Novel Radix Finite Field Multiplier for $GF(2^m)$", J. VLSI Signal Processing, Vol.15, No.3, pp.233-245, Mar. 1998
  15. S. Y. Kung, VLSI Array Processors, Englewood Cliffs, NJ: Prentice Hall, 1988
  16. NIST, Recommended elliptic curves for federal government use, May 1999. http://csrc.nist.gov