폴리에틸렌 열분해 생성물의 분포 특성

Distribution Characteristics of Pyrolysis Products of Polyethylene

  • 이동환 (충북대학교 공과대학 화학공학과) ;
  • 최홍준 (충북대학교 공과대학 화학공학과) ;
  • 김대수 (충북대학교 공과대학 화학공학과) ;
  • 이봉희 (충북대학교 공과대학 화학공학과)
  • Lee, Dong-Hwan (Department of Chemical Engineering, Chungbuk National University) ;
  • Choi, Hong-Jun (Department of Chemical Engineering, Chungbuk National University) ;
  • Kim, Dae-Su (Department of Chemical Engineering, Chungbuk National University) ;
  • Lee, Bong-Hee (Department of Chemical Engineering, Chungbuk National University)
  • 발행 : 2008.03.31

초록

LDPE, LLDPE 및 HDPE의 반응온도 및 반응시간에 따른 저온 열분해 특성을 연구하였다. 실험범위는 반응온도에 대하여 $425^{\circ}C$에서 $500^{\circ}C$이었고 반응시간은 35분에서 65분이었다. 열분해 생성물들은 한국석유품질검사소의 석유제품 품질기준에 따라 휘발유, 등유, 경유 및 왁스로 분류하였다. TGA분석결과, 3종류의 시료 모두가 가열속도를 증가시킴에 따라 열분해 개시온도가 증가하는 것으로 나타났으며, 일정한 가열속도에서 열분해 개시온도는 LDFE$475^{\circ}C$ 이상에서는 모든 폴리에틸렌 시료의 전환율이 90 wt% 이상이었다. 휘발유와 등유의 수율은 $450^{\circ}C$, 65분에서 최대이었으며 $475^{\circ}C$ 이상에서는 약간 감소하는 것으로 나타났다.

To investigate the characteristics of pyrolysis for LDPE, LLDPE and HDPE, the low temperature pyrolysis was carried out in the range of 425 to $500^{\circ}C$ for 35 to 65 min. The liquid products formed during pyrolysis were classified into gasoline, kerosene, light oil and wax according to the distillation temperatures based on the petroleum product quality standard of Korea Petroleum Quality Inspection Institute. TGA experiments for three PE samples showed that the onset temperature of pyrolysis increased with increasing heating rate, and the onset temperature of pyrolysis at a fixed heating rate was in the order of LDPE$475^{\circ}C$. Yields of gasoline and kerosene were highest at $450^{\circ}C$, 65 min and decreased slightly at above $475^{\circ}C$.

키워드

참고문헌

  1. K. H. Kim, S. C. Chun, and K. O. Ryu, J. Solid Wastes Eng. Soc., 13, 504 (1996)
  2. M. W. Shaub and W. Tsang, Environ. Sci. Technol., 17, 721 (1983) https://doi.org/10.1021/es00118a007
  3. K. Ramdoss and R. Tarrer, Fuel, 77, 293 (1998) https://doi.org/10.1016/S0016-2361(97)00193-2
  4. R. Miranda, H. Pakdel, C. Roy, and C. Vasile, Polym. Degrad. Stabil., 73, 47 (2001) https://doi.org/10.1016/S0141-3910(01)00066-0
  5. J. K. Lee, Prospect. Ind. Chem., 3, 16 (2000)
  6. D. S. Ryu, S. S. Kweon, H. S. Lee, and C. K. Lee, J, Kor. Soc. Environ. Engineers, 23, 207 (2001)
  7. J. Hayashi, T. Nakahara, K. Kusakabe, and S. Morooka, Fuel Process. Technol., 55, 265, (1998) https://doi.org/10.1016/S0378-3820(98)00047-2
  8. G. Luo, T. Suto, S. Yasu, and K. Kato, Polym. Degrad. Stabil., 70, 97 (2000) https://doi.org/10.1016/S0141-3910(00)00095-1
  9. M. Lee, Y. T. Hong, and S.B. Rhee, Synth. Met., 69, 515 (1995) https://doi.org/10.1016/0379-6779(94)02551-9
  10. P. T. Williams, Waste Treatment and Disposal, John Willy and Sons, Chichester, UK, 1998
  11. R. Miranda, J. Yang, C. Roy, and C. Vasile, Polym. Degrad. Stabil., 72, 469 (2001) https://doi.org/10.1016/S0141-3910(01)00048-9
  12. B. H. Hegberg, W. H. Hallenbeck, and G. R. Brenniman, Resour. Conserv. Recycl., 9, 89 (1993) https://doi.org/10.1016/0921-3449(93)90035-E
  13. O. Laguna, Revista de Plasticos Modernos, 65, 427 (1992)
  14. J. A. Conesa, R. Font, A. Marcilla, and A. N. Garcia, Energy Fuels, 8, 1238 (1994) https://doi.org/10.1021/ef00048a012
  15. M. V. S. Murty, E. A. Grulke, and D. Bhattacharyya, Polym. Degrad. Stabil., 61, 421 (1998) https://doi.org/10.1016/S0141-3910(97)00228-0
  16. J. A. Conesa, R. Font, and A. Marcilla, Energy Fuels, 11, 126 (1997) https://doi.org/10.1021/ef960098w
  17. D. S. Scott, S. R. Czernik, J. Piskorz, and A. G. Radlein, Energy Fuels, 4, 407 (1990) https://doi.org/10.1021/ef00022a013
  18. H. J. Yu, B. H. Lee, and D. S. Kim, Polymer(Korea), 27, 84 (2003)
  19. S. Y. Park, J. H. Kim, and B. H. Lee, J. Kor. Oil Chem. Soc., 23, 307 (2006)
  20. K. H. Kim and K. O. Ryu, J. Kor. Solid Wastes Eng. Soc., 13, 329 (1996)