X-Ray Scattering Studies on Molecular Structures of Star and Dendritic Polymers

  • Jin, Sang-Woo (Department of Chemistry, National Research Lab for Polymer Synthesis & Physics, Pohang Accelerator Laboratory, Center for Integrated Molecular Systems, Polymer Research Institute, and BK school of Molecular Science, Pohang University of Science and Technology) ;
  • Jin, Kyeong-Sik (Department of Chemistry, National Research Lab for Polymer Synthesis & Physics, Pohang Accelerator Laboratory, Center for Integrated Molecular Systems, Polymer Research Institute, and BK school of Molecular Science, Pohang University of Science and Technology) ;
  • Yoon, Jin-Hwan (Department of Chemistry, National Research Lab for Polymer Synthesis & Physics, Pohang Accelerator Laboratory, Center for Integrated Molecular Systems, Polymer Research Institute, and BK school of Molecular Science, Pohang University of Science and Technology) ;
  • Heo, Kyu-Young (Department of Chemistry, National Research Lab for Polymer Synthesis & Physics, Pohang Accelerator Laboratory, Center for Integrated Molecular Systems, Polymer Research Institute, and BK school of Molecular Science, Pohang University of Science and Technology) ;
  • Kim, Je-Han (Department of Chemistry, National Research Lab for Polymer Synthesis & Physics, Pohang Accelerator Laboratory, Center for Integrated Molecular Systems, Polymer Research Institute, and BK school of Molecular Science, Pohang University of Science and Technology) ;
  • Kim, Kwang-Woo (Department of Chemistry, National Research Lab for Polymer Synthesis & Physics, Pohang Accelerator Laboratory, Center for Integrated Molecular Systems, Polymer Research Institute, and BK school of Molecular Science, Pohang University of Science and Technology) ;
  • Ree, Moon-Hor (Department of Chemistry, National Research Lab for Polymer Synthesis & Physics, Pohang Accelerator Laboratory, Center for Integrated Molecular Systems, Polymer Research Institute, and BK school of Molecular Science, Pohang University of Science and Technology) ;
  • Higashihara, Tomoya (Polymeric and Organic Materials Department, Graduate School of Science and Engineering, Tokyo Institute of Technology) ;
  • Watanabe, Takumi (Polymeric and Organic Materials Department, Graduate School of Science and Engineering, Tokyo Institute of Technology) ;
  • Hirao, Akira (Polymeric and Organic Materials Department, Graduate School of Science and Engineering, Tokyo Institute of Technology)
  • Published : 2008.12.31

Abstract

We studied the molecular shapes and structural characteristics of a 33-armed, star polystyrene (PS-33A) and two $3^{rd}$-generation, dendrimer-like, star-branched poly(methyl methacrylate)s with different architectures (pMMA-G3a and PMMA-3Gb) and 32 end-branches under good solvent and theta ($\Theta$) solvent conditions by using synchrotron small angle X-ray scattering (SAXS). The SAXS analyses were used to determine the structural details of the star PS and dendrimer-like, star-branched PMMA polymers. PS-33A had a fuzzy-spherical shape, whereas PMMA-G3a and PMMA-G3b had fuzzy-ellipsoidal shapes of similar size, despite their different chemical architectures. The star PS polymer's arms were more extended than those of linear polystyrene. Furthermore, the branches of the dendrimer-like, star-branched polymers were more extended than those of the star PS polymer, despite having almost the same number of branches as PS-33A. The differences between the internal chain structures of these materials was attributed to their different chemical architectures.

Keywords

References

  1. S. I. Kim, M. Ree, T. J. Shin, and J. C. Jung, J. Polym. Sci. Part A: Polym. Chem., 37, 2909 (1999) https://doi.org/10.1002/(SICI)1099-0518(19990801)37:15<2909::AID-POLA24>3.0.CO;2-B
  2. S. W. Lee, T. Chang, and M. Ree, Macromol. Rapid Commun., 22, 941 (2001) https://doi.org/10.1002/1521-3927(20010801)22:12<941::AID-MARC941>3.0.CO;2-Q
  3. B. Chae, S. B. Kim, S. W. Lee, S. I. Kim, W. Choi, B. Lee, M. Ree, K. H. Lee, and J.C. Jung, Macromolecules, 35, 10119 (2002) https://doi.org/10.1021/ma020639i
  4. B. Chae, S.W. Lee, B. Lee, W. Choi, S. B. Kim, Y. M. Jung, J. C. Jung, K. H. Lee, and M. Ree, J. Phys. Chem. B, 107, 11911 (2003) https://doi.org/10.1021/jp034955q
  5. B. Chae, S. W. Lee, Y. M. Jung, M. Ree, and S. B. Kim, Langmuir, 19, 687 (2003) https://doi.org/10.1021/la020453c
  6. B. Chae, S. W. Lee, B. Lee, W. Choi, S. B. Kim, Y. M. Jung, J. C. Jung, K. H. Lee, and M. Ree, Langmuir, 19, 9459 (2003) https://doi.org/10.1021/la034230d
  7. B. Chae, S. W. Lee, S. B. Kim, B. Lee, and M. Ree, Langmuir, 19, 6039(2003) https://doi.org/10.1021/la0340596
  8. S. W. Lee, S. I. Kim, B. Lee, W. Choi, B. Chae, S. B. Kim, and M. Ree, Macromolecules, 36, 6527 (2003) https://doi.org/10.1021/ma034445u
  9. S. W. Lee, S. I. Kim, B. Lee, H. C. Kim, T. Chang, and M. Ree, Langmuir, 19, 10381 (2003) https://doi.org/10.1021/la0348158
  10. S. W. Lee, S. J. Lee, S. G. Hahm, T. J. Lee, B. Lee, B. Chae, S. B. Kim, J. C. Jung, W. C. Zin, B. H. Sohn, and M. Ree, Macromolecules, 38, 4331 (2005) https://doi.org/10.1021/ma047856z
  11. S. G. Hahm, T. J. Lee, T. Chang, J. C. Jung, W.-C. Zin, and M. Ree, Macromolecules, 39, 5385 (2006) https://doi.org/10.1021/ma060956f
  12. S. G. Hahm, T. J. Lee, and M. Ree, Adv. Funct. Mater., 17, 1359 (2007) https://doi.org/10.1002/adfm.200600369
  13. H.-C. Kim, J.-S. Kim, S. Baek, and M. Ree, Macromol. Res., 14, 173 (2006) https://doi.org/10.1007/BF03218505
  14. J. Yoon, K. S. Jin, H. C. Kim, G. Kim, K. Heo, S. Jin, J. Kim, K.-W. Kim, and M. Ree, J. Appl. Cryst., 40, 476 (2007) https://doi.org/10.1107/S0021889807009041
  15. J. Yoon, S. W. Lee, S. Choi, K. Heo, K. S. Jin, S. Jin, G. Kim, J. Kim, K.-W. Kim, H. Kim, and M. Ree, J. Phys. Chem. B, 112, 5338 (2008) https://doi.org/10.1021/jp711149k
  16. J. F. G. A. Jansen, H. W. I. Peerlings, E. M. M. de Brabander- Van den Berg, and E. W. Meijer, Angew. Chem. Int. Ed., 34, 1206 (1995) https://doi.org/10.1002/anie.199512061
  17. I. Tabakovic, L. L. Miller, R. G. Duan, D. C. Tully, and D. A. Tomalia, Chem. Mater., 9, 736 (1997) https://doi.org/10.1021/cm960431+
  18. J. L. Hedrick, T. Magbitang, E. F. Cornnor, T. Glauser, W. Volken, and C. L. Hawker, Chem. Eur. J., 8, 3308 (2002) https://doi.org/10.1002/1521-3765(20020802)8:15<3308::AID-CHEM3308>3.0.CO;2-D
  19. J. Groll, E. V. Amirgoulova, T. Ameringer, C. D. Heyes, C. Rocker, G. U. Nienhaus, and M. Moller, J. Am. Chem. Soc., 126, 4234 (2004) https://doi.org/10.1021/ja0318028
  20. S. M. Rele, W. Cui, L. Wang, S. Hou, B. Barr-Zarse, D. Taton, Y. Gnanou, J. D. Esko, and E. L. Chaikof, J. Am. Chem. Soc., 127, 10132 (2005) https://doi.org/10.1021/ja0511974
  21. C. Park, M. Rhue, M. Im, and C. Kim, Macromol. Res., 15, 688 (2007) https://doi.org/10.1007/BF03218951
  22. A. Hirao, K. Sugiyama, and H. Yokoyama, Prog. Polym. Sci., 32, 1393 (2007) https://doi.org/10.1016/j.progpolymsci.2007.08.001
  23. Y. C. Shin, K.-Y. Choi, M. Y. Jin, S.-K. Hong, D. Cho, T. Chang, and M. Ree, Korea Polym. J., 9, 100 (2001)
  24. J.-S. Kim, H.-C. Kim, B. Lee, and M. Ree, Polymer, 46, 7394 (2005) https://doi.org/10.1016/j.polymer.2005.06.024
  25. B. Lee, Y.-H. Park, Y.-T. Hwang, W. Oh, J. Yoon, and M. Ree, Nat. Mater., 4, 147 (2005) https://doi.org/10.1038/nmat1291
  26. B. Lee, W. Oh, Y. Hwang, Y.-H. Park, J. Yoon, K. S. Jin, K. Heo, J. Kim, K.-W. Kim, and M. Ree, Adv. Mater., 17, 696 (2005) https://doi.org/10.1002/adma.200400919
  27. B. Lee, J. Yoon, W. Oh, Y. Hwang, K. Heo, K. S. Jin, J. Kim, K.-W. Kim, and M. Ree, Macromolecules, 38, 3395 (2005) https://doi.org/10.1021/ma048214e
  28. B. Lee, W. Oh, J. Yoon, Y. Hwang, J. Kim, B. G. Landes, J. P. Quintana, and M. Ree, Macromolecules, 38, 8991 (2005) https://doi.org/10.1021/ma0501951
  29. M. Ree, J. Yoon, and K. Heo, J. Mater. Chem., 16, 685 (2006) https://doi.org/10.1039/b511301f
  30. Y. Kim, S. Cook, S. M. Tuladhar, S. A. Choulis, J. Nelson, J. R. Durrant, D. D. C. Bradley, M. Giles, I. McCulloch, C.-S. Ha, and M. Ree, Nat. Mater., 5, 197 (2006) https://doi.org/10.1038/nmat1574
  31. K. Heo, K. S. Jin, J. Yoon, S. Jin, W. Oh, and M. Ree, J. Phys. Chem. B, 110, 15887 (2006) https://doi.org/10.1021/jp061372i
  32. J. Yoon, K. Heo, W. Oh, K. S. Jin, S. Jin, J. Kim, K.-W. Kim, T. Chang, and M. Ree, Nanotechnology, 17, 3490 (2006) https://doi.org/10.1088/0957-4484/17/14/022
  33. K. S. Jin, K. Heo, W. Oh, J. Yoon, B. Lee, Y. Hwang, J.-S. Kim, Y.-H. Park, T. Chang, and M. Ree, J. Appl. Cryst., 40, s631 (2007) https://doi.org/10.1107/S0021889807014574
  34. W. Oh, Y. Hwang, T. J. Shin, B. Lee, J.-S. Kim, J. Yoon, S. Brennan, A. Mehta, and M. Ree, J. Appl. Cryst., 40, s626 (2007) https://doi.org/10.1107/S0021889806047509
  35. W. Oh, Y. D. Park, Y. Hwang, and M. Ree, Bull. Korean Chem. Soc., 28, 2481 (2007) https://doi.org/10.5012/bkcs.2007.28.12.2481
  36. B. J. Bauer and L. J. Fetters, Rubber Chem. Technol., 51, 406 (1978) https://doi.org/10.5254/1.3535747
  37. J. Roovers, N. Hadjichristidis, and L. J. Fetters, Macromolecules, 16, 214 (1983) https://doi.org/10.1021/ma00236a012
  38. J. Roovers, in Encyclopedia of Polymer Science and Engineering, 2nd ed., J. I. Kroschwitz, Ed., Wiley-Interscience, New York, 1985, Vol. 2, p. 478
  39. K. Huber, S. Bantle, W. Burchard, and L. J. Fetters, Macromolecules, 19, 1404 (1986) https://doi.org/10.1021/ma00159a020
  40. D. Richter, B. Farago, L. J. Fetters, J. S. Huang, and B. Ewen, Macromolecules, 23, 1845 (1990) https://doi.org/10.1021/ma00208a049
  41. P. J. Lutz and D. Rein, in Star and Hyperbranched Polymers, M. K. Mishra and S. Kobayashi, Eds., Marcel Dekker, New York, 1999, p. 27
  42. N. Hadjichristidis, M. Pitsikalis, S. Pispas, and H. Iatou, Chem. Rev., 101, 3747 (2001) https://doi.org/10.1021/cr9901337
  43. A. Hirao, M. Hayashi, S. Loykulnant, K. Sugiyama, S.-W. Ryu, N. Haraguchi, A. Matsuo, and T. Higashihara, Prog. Polym. Sci., 30, 111 (2005) https://doi.org/10.1016/j.progpolymsci.2004.12.002
  44. S. M. Grayson and M. J. Frechet, Chem. Rev., 101, 3619 (2001)
  45. A. Hirao, K. Sugiyama, Y. Tsunoda, A. Matsuo, and T. Watanabe, J. Polym. Sci. Part A: Polym. Chem., 44, 6659 (2006) https://doi.org/10.1002/pola.21701
  46. D. Taton, S. Matmour, S. Angot, S. Hou, R. Francis, B. Lepoittevin, D. Moinard, J. Babin, and Y. Gnanou, Polym. Int., 55, 1138 (2006) https://doi.org/10.1002/pi.2014
  47. A. Hirao and N. Haraguchi, Macromolecules, 35, 7238 (2002) https://doi.org/10.1021/ma0203400
  48. A. Hirao and Y. Tokuda, Macromolecules, 36, 6081 (2003) https://doi.org/10.1021/ma030118a
  49. A. Hirao, M. Hayashi, S. Loykulnant, K. Sugiyama, S.-W. Ryu, N. Haraguchi, A. Matsuo, and T. Higashihara, Prog. Polym. Sci., 30, 111 (2005) https://doi.org/10.1016/j.progpolymsci.2004.12.002
  50. J. Bolze, J. Kim, J.-Y. Huang, S. Rah, H. S. Youn, B. Lee, T. J. Shin, and M. Ree, Macromol. Res., 10, 2 (2002) https://doi.org/10.1007/BF03218282
  51. M. Ree, S. H. Woo, and T. J. Shin, Polymer Sci. Technol. (Korea), 8, 57 (1997)
  52. M. Ree, S. I. Kim, S. W. Lee, and J. H. Jung, Polymer Sci. Technol. (Korea), 8, 663 (1997)
  53. M. Ree, T. J. Shin, and S. W. Lee, Korea Polym. J., 9, 1 (2001)
  54. T. J. Shin, B. Lee, H. S. Youn, K.-B. Lee, and M. Ree, Langmuir, 17, 7842 (2001) https://doi.org/10.1021/la0108656
  55. B. Lee, T. J. Shin, S. W. Lee, J. W. Lee, and M. Ree, Macromol. Symp., 190, 173 (2002)
  56. B. Lee, T. J. Shin, S. W. Lee, J. Yoon, J. Kim, H. S. Youn, K.-B. Lee, and M. Ree, Polymer, 44, 2509 (2003) https://doi.org/10.1016/S0032-3861(03)00130-7
  57. B. Lee, T. J. Shin, S. W. Lee, J. Yoon, J. Kim, and M. Ree, Macromolecules, 37, 4174 (2004) https://doi.org/10.1021/ma0357321
  58. T. J. Shin and M. Ree, J. Phys. Chem. B, 111, 13894 (2007) https://doi.org/10.1021/jp075067o
  59. K. Heo, J. Yoon, K. S. Jin, S. Jin, H. Sato, Y. Ozaki, M. M. Satkowski, I. Noda, and M. Ree, J. Phys. Chem. B, 112, 4571 (2008) https://doi.org/10.1021/jp711136x
  60. B. Lee, I. Park, J. Yoon, S. Park, J. Kim, K.-W. Kim, T. Chang, and M. Ree, Macromolecules, 38, 4311 (2005) https://doi.org/10.1021/ma047562d
  61. I. Park, B. Lee, J. Ryu, K. Im, J. Yoon, M. Ree, and T. Chang, Macromolecules, 38, 10532 (2005) https://doi.org/10.1021/ma051137i
  62. K. Heo, J. Yoon, and M. Ree, IEE Proc. Bionanotechnology, 153, 121 (2006)
  63. S. Jin, J. Yoon, K. Heo, H.-W. Park, T. J. Shin, T. Chang, and M. Ree, J. Appl. Cryst., 40, 950 (2007)
  64. K. Heo, S.-G. Park, J. Yoon, K. S. Jin, S. Jin, S.-W. Rhee, and M. Ree, J. Phys. Chem. C, 111, 10848 (2007) https://doi.org/10.1021/jp072125x
  65. K. Heo, J. Yoon, K. S. Jin, S. Jin, G. Kim, H. Sato, Y. Ozaki, M. M. Satkowski, I. Noda, and M. Ree, J. Appl. Cryst., 40, s594 (2007) https://doi.org/10.1107/S0021889807000878
  66. J. Yoon, S. C. Choi, S. Jin, K. S. Jin, K. Heo, and M. Ree, J. Appl. Cryst., 40, s669 (2007) https://doi.org/10.1107/S0021889806056056
  67. K. Heo, K. S. Oh, J. Yoon, K. S. Jin, S. Jin, C. K. Choi, and M. Ree, J. Appl. Cryst., 40, s614 (2007) https://doi.org/10.1107/S0021889807008588
  68. T. J. Lee, G.-S. Byun, K. S. Jin, K. Heo, G. Kim, S. Y. Kim, I. Cho, and M. Ree, J. Appl. Cryst., 40, s620 (2007) https://doi.org/10.1107/S0021889806052289
  69. J. Yoon, S. Y. Yang, K. Heo, B. Lee, W. Joo, J. K. Kim, and M. Ree, J. Appl. Cryst., 40, 305 (2007) https://doi.org/10.1107/S0021889807000817
  70. K. Heo, J. Yoon, S. Jin, J. Kim, K.-W. Kim, T. J. Shin, B. Chung, T. Chang, and M. Ree, J. Appl. Cryst., 41, 281 (2008) https://doi.org/10.1107/S0021889808001271
  71. C.-J. Yu, J. Kim, K.-W. Kim, G.-H. Kim, H.-S. Lee, M. Ree, and K.-J. Kim, J. Kor. Vac. Soc., 14, 138 (2005)
  72. D. S. Jang, H. J. Lee, B. Lee, B. H. Hong, H. J. Cha, J. Yoon, K. Lim, Y. J. Yoon, J. Kim, M. Ree, H. C. Lee, and K. Y. Choi, FEBS Letters, 280, 4166 (2006)
  73. J. M. Choi, S. Y. Kang, W. J. Bae, K. S. Jin, M. Ree, and Y. Cho, J. Biol. Chem., 282, 9941 (2007) https://doi.org/10.1074/jbc.M609657200
  74. D. Y. Kim, K. S. Jin, E. Kwon, M. Ree, and K. K. Kim, Proc. Natl. Acad. Sci. USA, 104, 8779 (2007)
  75. J. H. Lee, G. B. Kang, H.-H. Lim, K. S. Jin, S.-H. Kim, M. Ree, C.-S. Park, S.-J. Kim, and S. H. Eom, J. Mol. Biol., 376, 308 (2008) https://doi.org/10.1016/j.jmb.2007.10.081
  76. K. S. Jin, D. Y. Kim, Y. Rho, V. B. Le, E. Kwon, K. K. Kim, and M. Ree, J. Synchrotron Rad., 15, 219 (2008) https://doi.org/10.1107/S0909049507066319
  77. M. Ree and I. S. Ko, Phys. High Tech., 14, 2 (2005)
  78. K. Kuwajima, T. Inobe, and M. Arai, Macromol. Res., 14, 166 (2006) https://doi.org/10.1007/BF03218504
  79. W. T. Chuang, U. S. Jeng, H. S. Sheu, and P. D. Hong, Macromol. Res., 14, 45 (2006) https://doi.org/10.1007/BF03219067
  80. C. Li, G. H. Li, H. C. Moon, D. H. Lee, J. K. Kim, and J. Cho, Macromol. Res., 15, 656 (2007) https://doi.org/10.1007/BF03218946
  81. O. Glatter and O. Kratky, Small Angle X-ray Scattering, Academic Press, New York, 1982
  82. R.-J. Roe, Methods of X-Ray and Neutron Scattering in Polymer Science, Oxford, U. Press, New York, 2000
  83. F. Ganazzoli and R. La Ferla, J. Chem. Phys., 113, 9288 (2000) https://doi.org/10.1063/1.1319654
  84. O. Glatter, Acta Phys. Austriaca, 47, 83 (1977)
  85. O. Glatter, J. Appl. Cryst., 10, 415 (1977) https://doi.org/10.1107/S0021889877013879
  86. O. Glatter, J. Appl. Cryst., 13, 577 (1980) https://doi.org/10.1107/S0021889880012794
  87. S. Rathgeber, M. Monkenbusch, M. Kreitschmann, V. Urban, and A. Brulet, J. Chem. Phys., 117, 4047 (2002) https://doi.org/10.1063/1.1493771
  88. M. Daoud and J. Cotton, J. Phys. (Paris), 43, 531 (1982) https://doi.org/10.1051/jphys:01982004303053100
  89. D. Papanagopoulos and A. Dondos, Eur. Polym. J., 40, 2305 (2004) https://doi.org/10.1016/j.eurpolymj.2004.06.006
  90. J. S. Pedersen, Adv. Colloid Interf. Sci., 70, 171 (1997) https://doi.org/10.1016/S0001-8686(97)00312-6
  91. M. Kurata and Y. Tsunashima, in Polymer Handbook, 3rd ed., J. Brandrup and H. Immergut, Eds., Wiley-Interscience, New York, 1989, VII, pp. 33