DOI QR코드

DOI QR Code

The Failure Model of RC Flat Plates Considering Interrelation between Punching Shear and Unbalanced Moment

불균형모멘트와 펀칭전단의 상관관계를 고려한 철근콘크리트 무량판 슬래브의 파괴모델

  • Published : 2008.08.31

Abstract

In structural design provision, maximum punching shear stress of slabs is prescribed as combined stress in direct shear occurred by gravity load and eccentric shear occurred by unbalanced moment. This means that the effect of unbalanced moment is considered to decide the punching shear stress. However, from the resistance capacity standpoint, the effect of unbalanced moment strength is not considered for deciding punching shear strength. In this paper, a model considering interrelation between unbalanced moment and punching shear was proposed. In the model, the relation between load effect and resistance capacity in unbalanced moment and punching shear was two-dimensionally expressed. Using the interrelation model, a method how unbalanced moment strength should be considered to decide the punching shear strength was proposed. Additionally, effective width enlargement factors for deciding the unbalanced moment strength of flat plates with shear reinforcements were proposed. The interrelation model proposed in this paper is very effective for the prediction of the behavior of slab-column connection because not only punching shear and unbalanced moment strengths but also failure modes of flat plates can be accurately predicted.

구조설계기준에서, 슬래브의 최대 펀칭전단응력은 연직하중에 의한 직접전단과 불균형모멘트에 의한 편심전단의 조합응력으로 규정하고 있다. 이것은 슬래브에 작용하는 펀칭전단응력에 불균형모멘트의 영향을 반영한 것이다. 그러나 부재의 저항성능 즉 펀칭전단강도에는 슬래브의 불균형모멘트강도 영향을 전혀 고려하고 있지 않다. 본 논문에서는 불균형모멘트-펀칭전단 상관모델을 제시하였다. 상관모델에서 불균형모멘트와 펀칭전단의 하중영향 및 저항성능 관계는 2차원으로 표현된다. 상관모델을 이용하여, "슬래브의 펀칭전단강도를 결정하는데 있어 불균형모멘트강도를 어떻게 반영할 것인지"에 대한 방안을 제시하였다. 또한, 전단보강재가 불균형모멘트강도에 미치는 영향을 분석하고 이를 구조설계에 반영하기 위한 유효폭확대계수의 적용을 제안하였다. 본 논문에서 제시한 상관모델은 하중과 전단보강재에 따른 펀칭전단과 불균형모멘트 강도를 실제 거동에 가깝게 정의할 수 있고 슬래브의 휨지배파괴 또는 전단지배파괴의 최종적인 파괴모드를 쉽게 예측할 수 있어 슬래브의 구조적 거동을 예측하는데 매우 효과적이다.

Keywords

References

  1. 한국콘크리트학회, 2007년도 개정 콘크리트구조설계기준 해설, 한국콘크리트학회, 2007, pp. 163, 192, 198, 200, 269
  2. ACI Committee 318, Building Code Requirements for Structural Concrete and Commentary, ACI 318-05 and ACI-318R- 05, American Concrete Institute, Farmington Hills, MI, 2005. pp. 159, 183, 189, 190, 225
  3. ACI-ASCE Committee 352, "Recommendations for Design of Slab-Column Connections in Monolithic Reinforced Concrete Structures," ACI Structural Journal, American Concrete Institute, 1988, pp. 675-696
  4. ACI-ASCE Committee 421, "Shear Reinforcement for Slabs," ACI Structural Journal, American Concrete Institute, 1999, pp. 421.1R-6
  5. 최정욱, 송진규, 박홍근, 김준희, "전단 보강된 무량판-기둥 접합부의 횡저항 성능," 대한건축학회논문집 구조계, 23권, 9호, 2007, pp. 47-54
  6. 최정욱, 송진규, 김준희, "슬래브-기둥 접합부의 펀칭강도 및 횡변위 성능에 관한 반복 횡하중 실험", 한국구조물진단학회지, 11권, 4호, 2007, pp. 99-108
  7. ATENA MANUAL, Cervenka Consulting, 2001
  8. Islam, S. and Park, R., "Tests on Slab-Column Connections with Shear and Unbalanced Flexure," Journal of Structure Division, ASCE, Vol. 102, No. 3, pp. 549-568
  9. Robertson, I. N., Kawai, T., Lee, J., and Enomoto, B., "Cyclic Testing of Slab-Column Connections with Shear Reinforcement," ACI Structural Journal, Vol. 99, No. 5, 2002, pp. 605-613
  10. Elgabry, A. A. and Ghali, A., "Tests on Concrete Slab-Column Connections with Stud-Shear Reinfor cement Subjected to Shear-Moment Transfer," ACI Structural Journal, Vol. 84, No. 5, 1987, pp. 433-442
  11. Pan, A. D. and Moehle, J. P., "An Experimental Study of Slab-Column Connections," ACI Structural Journal, Vol. 89, No. 6, 1992, pp. 626-638
  12. Robertson, L. N. and Durrani, A. J., "Gravity Load Effect on Seismic Behavior of Interior Slab-Column Connections," ACI Structural Journal, Vol. 89, No. 1, 1992, pp. 37-45