DOI QR코드

DOI QR Code

Anti-Proliferative Effect of Tetraphenylporphine (TPP) as an Iron Chelator on Vascular Smooth Muscle Cells and its Release Profiles from Polymer Coating Layer

철 킬레이터로서의 tetraphenylporphine의 혈관평활근세포의 성장억제효과와 고분자 코팅막으로부터의 방출 특성

  • 박민희 (인제대학교 공과대학 나노공학부) ;
  • 강수용 (인제대학교 공과대학 나노공학부) ;
  • 박현정 (인제대학교 공과대학 나노공학부) ;
  • 서진선 (인제대학교 공과대학 나노공학부) ;
  • 박영아 (인제대학교 의과대학 의학과) ;
  • 김지은 (인제대학교 의과대학 의학과) ;
  • 김양근 (인제대학교 의과대학 의학과) ;
  • 왕배건 (인제대학교 의과대학 의학과) ;
  • 오돈치멕문크자갈 (인제대학교 공과대학 나노공학부) ;
  • 심영기 (인제대학교 공과대학 나노공학부) ;
  • 고원규 (인제대학교 의과대학 의학과) ;
  • 이우경 (인제대학교 공과대학 나노공학부)
  • Published : 2008.04.21

Abstract

The drug-eluting stent (DES) implantation is a widely acceptable treatment for coronary heart disease. It was reported that iron chelator had anti-proliferative effect on human vascular smooth muscle cells (HA-VSMCs). In this study, tetraphenylporphine (TPP) was selected as an iron chelator and drug for DES. MTT assay showed that TPP had antiproliferative effect on HA-VSMCs. TPP and polycaprolactone (PCL) were coated onto stainless steel plate using a spraycoating method. From the surface morphology examination of the coated plate by SEM, smooth polymer coating layer could be observed. The thickness of coating layer could be controlled by changing repeating time of coating. From in vitro release test, sustained release of TPP was observed from plate during two weeks. Thus, TPP as iron chelator can be used as drug for stent coating because of its antiproliferative effect and sustain release profile.

Keywords

References

  1. Homepage of World Health Oragnization (http://www.who.int/en/)
  2. G. Acharya; K. Park, Mechanisms of controlled drug release from drug-eluting stents. Adv. Drug Deliv. Rev., 58(3), 387-401 (2006) https://doi.org/10.1016/j.addr.2006.01.016
  3. K.R. Kamath; J.J. Barry; K.M. Miller, The Taxus drugeluting stent: a new paradigm in controlled drug delivery. Adv. Drug Deliv. Rev., 58(3), 412-36 (2006) https://doi.org/10.1016/j.addr.2006.01.023
  4. C. Yang; H.M. Burt, Drug-eluting stents: factors governing local pharmacokinetics. Adv. Drug Deliv. Rev., 58(3), 402-11 (2006) https://doi.org/10.1016/j.addr.2006.01.017
  5. J.E. Sousa; P.W. Serruys; M.A. Costa, New frontiers in cardiology: drug-eluting stents: Part II. Circulation, 107(18), 2383-9 (2003) https://doi.org/10.1161/01.CIR.0000069331.67148.2F
  6. J.E. Sousa; P.W. Serruys; M.A. Costa, New frontiers in cardiology: drug-eluting stents: Part I. Circulation, 107(17), 2274-9 (2003) https://doi.org/10.1161/01.CIR.0000069330.41022.90
  7. N.T. Le; D.R. Richardson, Iron chelators with high antiproliferative activity up-regulate the expression of a growth inhibitory and metastasis suppressor gene: a link between iron metabolism and proliferation. Blood, 104(9), 2967-75 (2004) https://doi.org/10.1182/blood-2004-05-1866
  8. Y.K. Hodges; S.M. Reese; P.M. Pahl; L.D. Horwitz, Paradoxical effects of iron chelation on growth of vascular endothelial cells. J. Cardiovasc. Pharmacol., 45(6), (2005)
  9. E. Weizman; C. Rothmann; L. Greenbaum; A. Shainberg; M. Adamek; B. Ehrenberg; Z. Malik, Mitochondrial localization and photodamage during photodynamic therapy with tetraphenylporphines. J. Photochem. Photobiol. B., 59(1-3), 92-102 (2000) https://doi.org/10.1016/S1011-1344(00)00143-3
  10. M. Canete; A. Villanueva; V. Dominguez; S. Polo; A. Juarranz; J.C. Stockert, Meso-tetraphenylporphyrin: photosensitizing properties and cytotoxic effects on cultured tumor cells. Int. J. Oncol., 13(3), 497-504 (1998)
  11. D.I. Axel; W. Kunert; C. Goggelmann; M. Oberhoff; C. Herdeg; A. Kuttner; D.H. Wild; B.R. Brehm; R. Riessen; G. Koveker; K.R. Karsch, Paclitaxel inhibits arterial smooth muscle cell proliferation and migration in vitro and in vivo using local drug delivery. Circulation, 96(2), 636-45 (1997) https://doi.org/10.1161/01.CIR.96.2.636
  12. S.J. Kim; T. Masaki; J.K. Leypoldt; C.D. Kamerath; S.F. Mohammad; A.K. Cheung, Arterial and venous smoothmuscle cells differ in their responses to antiproliferative drugs. J. Lab. Clin. Med., 144(3), 156-62 (2004) https://doi.org/10.1016/j.lab.2004.06.002
  13. J. Wiskirchen; W. Schober; N. Schart; R. Kehlbach; A. Wersebe; G. Tepe; C.D. Claussen; S.H. Duda, The effects of paclitaxel on the three phases of restenosis: smooth muscle cell proliferation, migration, and matrix formation: an in vitro study. Invest. Radiol., 39(9), 565-71 (2004) https://doi.org/10.1097/01.rli.0000133815.22434.55
  14. B. Narasimhan, Accurate models in controlled drug delivery systems : In Handbook of Pharmaceutical controlled release technology, D.L. Wise(Ed.), Marcel Dekker, U.S.A., pp. 155-181 (2000)