Heat Stability of the Antimicrobial Activity of Selected Plant Extracts against Aeromonas hydrophila

  • Xu, Hua (Division of Biomaterials Engineering, Kangwon National University) ;
  • Mustapha, Azlin (Division of Food Systems and Bioengineering, University of Missouri) ;
  • Ahn, Ju-Hee (Division of Biomaterials Engineering, Kangwon National University)
  • Published : 2008.03.31

Abstract

Antimicrobial stability of grape seed extract ($ActiVin^{TM}$), pine bark extract ($Pycnogenol^{(R)}$), and oleoresin rosemary ($Herbalox^{(R)}$) on the growth of Aeromonas hydrophila was investigated in cooked ground beef. When compared to the control, the populations of A. hydrophila were most effectively reduced by 4.06 log CFU/g for 1% $Pycnogenol^{(R)}$ added after cooking at 10 days of refrigerated storage, followed by 3.06 log CFU/g for 1% $Pycnogenol^{(R)}$ added before cooking and 1.36 log CFU/g for $ActiVin^{TM}$. Bacteriostatic and bactericidal activities were observed for $Pycnogenol^{(R)}$ added before and after cooking, respectively. $Pycnogenol^{(R)}$ consists of heat-labile and heat-stable compounds. $ActiVin^{TM}$ and $Pycnogenol^{(R)}$ could be considered for use as multifunctional preservatives in meat and meat products.

Keywords

References

  1. Tsai, G.J., Chen, T.H.: Incidence and toxigenicity of Aeromonas hydrophila in seafood. Int. J. Food Microbiol. 31, 121- 131 (1996) https://doi.org/10.1016/0168-1605(96)00972-5
  2. Isonhood, J.H., Drake, M.: Aeromonas species in foods. J. Food Prot. 65, 575-582 (2002) https://doi.org/10.4315/0362-028X-65.3.575
  3. Palumbo, S.A., Bencivengo, M.M., del Corral, F., Williams, A.C., Buchanan, R.L.: Characterization of the Aeromonas hydrophila group isolated from retail foods of animal origin. J. Clinic. Microbiol. 27,854-859 (1989)
  4. Bell, C., Kyriakides, A.: Bacterial hazards. In Foodborne pathogens, (Blackburn C.W., McClure P.J. eds.) Woodhead Publishing Ltd., Cambridge, England, pp. 279-433 (2002)
  5. Hao, Y.Y., Brackett, R.E., Doyle, M.P.: Inhibition of Listeria monocytogenes and Aeromonas hydrophilia by plant extracts in refrigerated cooked beef. J. Food Prot. 61, 307-312 (1998) https://doi.org/10.4315/0362-028X-61.3.307
  6. Davidson, P.M., Naidu, A.S.: Phyto-phenols. In Natural food antimicrobial systems, (Naidu, A.S. ed.) CRC Press LLC, Boca Raton, FL, pp. 265-294 (2000)
  7. Ahn, J., Grün, I.U., Mustapha, A.: Antimicrobial and antioxidant activities of natural extracts in vitro and in ground beef. J. Food Prot. 67, 148-155 (2004) https://doi.org/10.4315/0362-028X-67.1.148
  8. Ahn, J., Gruen, I.U., Mustapha, A.: Effects of plant extracts on microbial growth, color change, and lipid oxidation in cooked beef. Food Microbiol. 24, 7-14 (2007) https://doi.org/10.1016/j.fm.2006.04.006
  9. Elgayyar, M., Draughon, F.A., Golden, D.A., Mount, J.R.: Antimicrobial activity of essential oils from plants against selected pathogenic and saprophyltic microorganisms. J. Food Prot. 64, 1019-1024 (2001) https://doi.org/10.4315/0362-028X-64.7.1019
  10. Juven, B.J., Kanner, J., Schved, F., Weisslowicz, H.: Factors that interact with the antibacterial action of thyme essential oil and its active constituents. J. Appl. Bacteriol. 76, 626-631 (1994) https://doi.org/10.1111/j.1365-2672.1994.tb01661.x
  11. Pandit, V.A., Shelef, L.A.: Sensitivity of Listeria monocytogenes to rosemary (Rosmarinus officinalis L.). Food Microbiol. 11, 57-63 (1994) https://doi.org/10.1006/fmic.1994.1008
  12. Do, J.R., Kang, S.N., Kim, K.J., Jo, J.H., Lee, S.W.: Antimicrobial and antioxidant activities and phenolic contents in the water extract of medicinal plants. Food Sci. Biotech. 13: 640- 645 (2004)
  13. Do, J.R., Kang, S.N., Kim, K.J., Jo, J.H., Lee, S.W.: Antimicrobial and antioxidant activities and phenolic contents in the water extract of medicinal plants. Food Sci. Biotech. 13: 640- 645 (2004)
  14. Shelef, L.A., Jyothi, E.K., Bulgarelli, M.A.: Growth of enteropathogenic and spoilage bacteria in sage-containing broth and foods. J. Food Sci. 49: 737-740 (1984) https://doi.org/10.1111/j.1365-2621.1984.tb13198.x
  15. Hao, Y.Y., Brackett, R.E., Doyle, M.P.: Efficiency of plant extracts in inhibiting Aeromonas hydrophilia and Listeria monocytogenes in refrigerated, cooked poultry. Food Microbiol. 15, 378 (1998)
  16. Palumbo, S.A., Maxino, F., Williams, A.C., Buchanan, R.L., Thayer, D.W.: Starch-ampicillin agar for the quantitative detection of Aeromonas hydrophila. Appl. Environ.Microbiol. 50: 1027-1030 (1985)
  17. Linton, R.H., Carter, W.H., Pierson, M.D., Hackney, C.R.: Use of a modified Gompertz equation to model nonlinear survival curves for Listeria monocytogenes Scott A. J. Food Prot. 58: 946-954 (1995) https://doi.org/10.4315/0362-028X-58.9.946
  18. Andres, S.C., Giannuzzi, L., Zaritzky, N.E.: Mathematical modeling of microbial growth in packaged refrigerated orange juice treated with chemical preservatives. J. Food Sci. 66: 724-728 (2001) https://doi.org/10.1111/j.1365-2621.2001.tb04628.x
  19. Naidu, A.S., Bidlack, W.R., Crecelius, A.T.: Flavonoids. In Natural food antimicrobial systems, (Naidu, A.S. ed.) CRC Press LLC, Boca Raton, FL, pp. 326-348 (2000)
  20. Shoemaker, S.P., Pierson, M.D.: "Phoenix Phenomenon"in the growth of Clostridium perfringens. Appl. Environ. Microbiol. 32, 803-807 (1976)
  21. Hongpattarakere, T., Johnson, E.A.: Natural antimicrobial components isolated from Yerba mate (Ilex paraguariensis). Food Res. Inst.UW-Madison Annual Rep. 11, 39 (1999)