Etchingless Fabrication of Bi-level Microstructures for Liquid Crystal Displays on Plastic Substrates

  • Hong, Jong-Ho (School of Electrical Engineering, Seoul National University) ;
  • Cho, Seong-Min (School of Electrical Engineering, Seoul National University) ;
  • Kim, Yeun-Tae (School of Electrical Engineering, Seoul National University) ;
  • Lee, Sin-Doo (School of Electrical Engineering, Seoul National University)
  • Published : 2008.12.30

Abstract

In this study, the selective-wettability-inscription (SWI) technique for the wet-etchingless fabrication of surface microstructures applicable to wide-viewing liquid crystal displays (LCDs) on plastic substrates was demonstrated. On the basis of the selective wetting of the photopolymer, the bi-level microstructures were spontaneously formed to serve as spacers for maintaining uniform cell gap and protrusions for the generation of multi-domains. The LC cell that has bi-level microstructures shows good extinction in the field-off state and a wide-viewing property in the field-on state. The SWI technique would be useful for the fabrication of flexible displays on plastic substrates.

Keywords

References

  1. G. P. Crawford, Flexible Flat Panel Displays (John Wiley & Sons, New York, 2005), Ch. 2
  2. R. Penterman, S. I. Klink, H. de Koning, G. Nisato, and D. J. Broer, Nature 417, 55 (2002) https://doi.org/10.1038/417055a
  3. T. Murashige, H. Fujikake, H. Sato, H. Kikuchi, T. Kurita, and F. Sato, Jpn. J. Appl. Phys. 43, L1578 (2004) https://doi.org/10.1143/JJAP.43.L1578
  4. H. Fujikake, T. Murashige, H. Sato, Y. Iino, M. Kawakita, and H. Kikuchi, Opt. Eng. 41, 2195 (2002) https://doi.org/10.1117/1.1496112
  5. H. Sato, H. Fujikake, Y. Iino, M. Kawakita, and H. Kikuchi, Jpn. J. Appl. Phys. 41, 5302 (2002) https://doi.org/10.1143/JJAP.41.5302
  6. J.-W. Jung, S.-K. Park, S.-B. Kwon, and J.-H. Kim, Jpn. J. Appl. Phys. 43, 4269 (2004) https://doi.org/10.1143/JJAP.43.4269
  7. S.-J. Jang, J.-W. Jung, H.-R. Kim, M. Jin, and J.-H. Kim, Jpn. J. Appl. Phys. 44, 6670 (2005) https://doi.org/10.1143/JJAP.44.6670
  8. S.-C. Jeng, L.-P. Hsin, Y.-A. Sha, J.-M. Ding, H.-L. Wang, Y.-C. Hung, and C.-C. Liao, Jpn. J. Appl. Phys. 44, L159 (2005) https://doi.org/10.1143/JJAP.44.L159
  9. S. A. Lien, C. Cai, R. W. Nunes, R. A. John, E. A. Galligan, E. Colgan, and J. S. Wilson, Jpn. J. Appl. Phys. 35, L597 (1998)
  10. V. A. Konovalov, A. A. Muravski, S. N. Timofeev, and S. Y. Yakovenko, in SID'99 Dig. (1999), p. 668
  11. H. Vithana, D. Johnson, and P. J. Bos, Jpn. J. Appl. Phys. 35, L320 (1996) https://doi.org/10.1143/JJAP.35.L320
  12. H. Vithana, D. Johnson, P. J. Bos, R. Herke, Y. K. Fung, and S. Jamal, Jpn. J. Appl. Phys. 35, 2222 (1996) https://doi.org/10.1143/JJAP.35.2222
  13. J.-H. Park and S.-D. Lee, Mol. Cryst. Liq. Cryst. 412, 163 (2004) https://doi.org/10.1080/15421400490439770
  14. K. S. Lee, G. B. Blanchet, F. Gao, and Y.-L. Loo, Appl. Phys. Lett. 86, 074102 (2005) https://doi.org/10.1063/1.1862345
  15. S.-J. Kim, T. Ahn, M. C. Suh, C.-J. Yu, D.-W. Kim, and S.- D. Lee, Jpn. J. Appl. Phys. 35, L1109 (2005)
  16. S.-W. Lee, Y.-J. Na, Y. Choi, and S.-D. Lee, Jpn. J. Appl. Phys. 46, L1129 (2006)
  17. A. A. Darhuber, S. M. Troian, J. M. Davis, S. M. Miller, and S. Wagner, J. Appl. Phys. 88, 5119 (2000) https://doi.org/10.1063/1.1317238