• Title/Summary/Keyword: selective wettability

Search Result 21, Processing Time 0.023 seconds

Effect of Dewpoints on Annealing Behavior and Coating Characteristics in IF High Strength Steels Containing Si and Mn (Si, Mn함유 IF 고강도강의 소둔거동 및 도금특성에 미치는 이슬점 온도의 영향)

  • Jeon, Sun-Ho;Shin, Kwang-Soo;Sohn, Ho-Sang;Kim, Dai-Ryong
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.7
    • /
    • pp.427-436
    • /
    • 2008
  • The effect of dewpoints on annealing behavior and coating characteristics such as wettability and galvannealing kinetics was studied by annealing 0.3wt%Si - 0.1~0.4wt% Mn added interstitial-free high strength steels(IF-HSS). The 0.3wt%Si-0.1wt%Mn steel exhibited good wettability with molten zinc and galvannealing kinetics after annealing when the dewpoint of $H_2-N_2$ mixed gas was above $-20^{\circ}C$. It is shown that the wettability and galvannealing kinetics are directly related to the coverage of the external(surface) oxide formed by selective oxidation during annealing. At $N_2-15%H_2$ annealing atmosphere, the increase of dewpoint results in a gradual transition from external to internal selective oxidation. The decrease of external oxidation of alloying elements with a concurrent increase of their subsurface enrichment in the substrate, showing a larger surface area that was free of oxide particles, contributed to the improved wettability and galvannealing kinetics. On the other hand, the corresponding wettability and galvannealing kinetics were deteriorated with the dewpoints below $-20^{\circ}C$. The continuous oxide layer of network and/or film type was formed on the steel surface, leading to the poor wettability and galvannealing kinetics. It causes a high contact angle between annealed surface and molten zinc and plays an interrupting role in interdiffusion of Zn and Fe during galvannealing process.

Fabrication of Lateral and Stacked Color Patterns through Selective Wettability for Display Applications

  • Hong, Jong-Ho;Na, Jun-Hee;Li, Hongmei;Lee, Sin-Doo
    • Journal of Information Display
    • /
    • v.11 no.4
    • /
    • pp.140-143
    • /
    • 2010
  • A simple and versatile method of fabricating color patterns in two-dimension (2D) and three-dimension (3D) was developed using the selective-wettability approach. Red, green, and blue color elements are sequentially formed on a single substrate in a pattern-by-pattern and/or pattern-on-pattern fashion, through a simple coating process. Either 2D or 3D structures in an array format are produced by controlling the thickness of the hydrophobic layer (HL) coating a substrate within the framework of wetting transition. Moreover, it was demonstrated that the stacked geometry of two successive patterns can be easily tailored for various types of color arrays, with the pattern fidelity of a few tens of nanometers in terms of only a parameter of the HL thickness.

Fabrication of An Organic Thin-Film Transistor Array by Wettability Patterning for Liquid Crystal Displays

  • Kim, Sung-Jin;Bae, Jin-Hyuk;Ahn, Taek;Suh, Min-Chul;Chang, Seung-Wook;Mo, Yeon-Gon;Chung, Ho-Kyoon;Lee, Sin-Doo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.151-154
    • /
    • 2007
  • We demonstrate a novel selective patterning process of a semiconducting polymer for channel regions to fabricate an array of organic thin-film transistors (OTFTs). This process is applicable for various organic films over large area. A reflective liquid crystal display based on the OTFT array was produced using the selective patterning through a wettability control.

  • PDF

Etchingless Fabrication of Bi-level Microstructures for Liquid Crystal Displays on Plastic Substrates

  • Hong, Jong-Ho;Cho, Seong-Min;Kim, Yeun-Tae;Lee, Sin-Doo
    • Journal of Information Display
    • /
    • v.9 no.4
    • /
    • pp.6-10
    • /
    • 2008
  • In this study, the selective-wettability-inscription (SWI) technique for the wet-etchingless fabrication of surface microstructures applicable to wide-viewing liquid crystal displays (LCDs) on plastic substrates was demonstrated. On the basis of the selective wetting of the photopolymer, the bi-level microstructures were spontaneously formed to serve as spacers for maintaining uniform cell gap and protrusions for the generation of multi-domains. The LC cell that has bi-level microstructures shows good extinction in the field-off state and a wide-viewing property in the field-on state. The SWI technique would be useful for the fabrication of flexible displays on plastic substrates.

Effect of Alloy Elements on Galvannealed Coating Quality in IF High Strength Steels (IF 고강도 합금화 용융아연도금강판의 표면품질에 미치는 합금원소의 영향)

  • Jeon, Sun-Ho;Chin, Kwang-Geun;Shin, Kwang-Soo;Sohn, Ho-Sang;Kim, Dai-Ryong
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.5
    • /
    • pp.289-295
    • /
    • 2008
  • The effect of the alloy elements(Si/Mn) ratio on the coating quality including wettabilty with molten zinc, galvannealing kinetics and crater has been investigated in interstitial-free high strength steel(IFHSS) containing Si and Mn. When the Si/Mn ratio was below 0.75, IF-HSS exhibited a good wettability leading to a good galvannealed coating quality after annealing at $800^{\circ}C$ for 40s in $15%H_2-N_2$ mixed gas with dew point $-60^{\circ}C$. In contrast, the wettability and galvannealed coating quality were deteriorated in the Si/ Mn ratio above 0.75. It is shown that they have relevance to oxides forms by selective oxidation on the steel surface. The oxide particles dispersed on the steel surface with a surface coverage of below 40% resulted in good wettability and galvannealed coating quality. The oxide particle is mainly consisted of $Mn_2SiO_4$ with low contact angle in molten zinc. On the other hand, the continuous oxide layer on the steel surface, such as network- and film-type,caused to poor wettability and galvannealed coating quality. The coverage of oxide layer was above 80%, and its chemical species was $SiO_2$ with high contact angle in molten zinc. Consequently, the Si/Mn alloy ratio played an importance role in galvannealed coating quality of IF-HSS.

Effects of Silicon on Galvanizing Coating Characteristics in Dual Phase High Strength Steel (복합조직형 고강도 용융아연 도금강판의 도금특성에 미치는 강중 Si의 영향)

  • Jeon, Sun-Ho;Chin, Kwang-Geun;Shin, Kwang-Soo;Lee, Joon-Ho;Sohn, Ho-Sang
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.7
    • /
    • pp.423-432
    • /
    • 2009
  • In the galvanizing coating process, the effects of the silicon content on the coatability and wettability of molten zinc were investigated on Dual-Phase High Strength Steels (DP-HSS) with various Si contents using the galvanizing simulator and dynamic reactive wetting systems. DP-HSS showed good coatability and a well-developed inhibition layer in the range of Si content below 0.5 wt%. Good coatability was the results of the mixed oxide $Mn_{2}SiO_{4}$, being formed by the selective oxidation on the surface, with a low contact angle in molten zinc and a large fraction of oxide free surface that provided a sufficient site for the molten zinc to wet and react with the substrate. On the other hand, with more than 0.5 wt%, DP-HSS exhibited poor coatability and an irregularly developed inhibition layer. The poor coatability was due to the poor wettability that resulted from the development of network-type layers of amorphous ${SiO}_{2}$, leading to a high contact angle in molten zinc, on the surface.

Etchless Fabrication of Cu Circuits Using Wettability Modification and Electroless Plating (젖음성 차이와 무전해도금을 이용한 연성 구리 회로패턴 형성)

  • Park, Sang-Jin;Ko, Tae-Jun;Yoon, Juil;Moon, Myoung-Woon;Han, Jun Hyun
    • Korean Journal of Materials Research
    • /
    • v.25 no.11
    • /
    • pp.622-629
    • /
    • 2015
  • Cu circuits were successfully fabricated on flexible PET(polyethylene terephthalate) substrates using wettability difference and electroless plating without an etching process. The wettability of Cu plating solution on PET was controlled by oxygen plasma treatment and $SiO_x$-DLC(silicon oxide containing diamond like carbon) coating by HMDSO(hexamethyldisiloxane) plasma. With an increase of the height of the nanostructures on the PET surface with the oxygen plasma treatment time, the wettability difference between the hydrophilicity and hydrophobicity increased, which allowed the etchless formation of a Cu pattern with high peel strength by selective Cu plating. When the height of the nanostructure was more than 1400 nm (60 min oxygen plasma treatment), the reduction of the critical impalement pressure with the decreasing density of the nanostructure caused the precipitation of copper in the hydrophobic region.

Bioinspired Metal Surfaces by Plasma Treatment

  • Yu, Ui-Seon;Go, Tae-Jun;O, Gyu-Hwan;Mun, Myeong-Un
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.97-97
    • /
    • 2013
  • The exterior structures of natural organisms have continuously evolved by controlling wettability, such as the Namib Desert beetle, whose back has hydrophilic/hydrophobic contrast for water harvesting by mist condensation in dry desert environments, and some plant leaves that have hierarchical micro/nanostructures to collect or repel liquid water. In this work, we have provided a method for wettability contrast on metals by both nano-flake or needle patterns and tuning of the surface energy. Metals including steel alloys and aluminum were provided with hierarchical micro/nanostructures of metaloxides induced by fluorination and a subsequent catalytic reaction of fluorine ions on metal surfaces in water with various ranges from room to boiling temperature of water. Then, a hydrophobic material was deposited on the structured surfaces, rendering superhydrophobicity. Plasma oxidization induces the formation of superhydrophilic surfaces on selective regions surrounded by superhydrophobic surfaces. We show that wettability contrast surfaces align liquid water within patterned hydrophilic regions during the condensation process. Furthermore, this method could have a greater potential to align other liquids or living cells.

  • PDF

Bioinspired Metal Surfaces with Extreme Wettability Contrast

  • Yu, Ui-Seon;Heo, Eun-Gyu;Go, Tae-Jun;Lee, Gwang-Ryeol;O, Gyu-Hwan;Mun, Myeong-Un
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.122-122
    • /
    • 2012
  • The exterior structures of natural organisms have continuously evolved by controlling wettability, such as the Namib Desert beetle, whose back has hydrophilic/hydrophobic contrast for water harvesting by mist condensation in dry desert environments, and some plant leaves that have hierarchical micro/nanostructures to collect or repel liquid water. In this work, we have provided a method for wettability contrast on metals by both nano-flake or needle patterns and tuning of the surface energy. Metals including steel alloys and aluminum were provided with hierarchical micro/nanostructures of metaloxides induced by fluorination and a subsequent catalytic reaction of fluorine ions on metal surfaces in water with various ranges from room to boiling temperature of water. Then, a hydrophobic material was deposited on the structured surfaces, rendering superhydrophobicity. Plasma oxidization induces the formation of superhydrophilic surfaces on selective regions surrounded by superhydrophobic surfaces. We show that wettability contrast surfaces align liquid water within patterned hydrophilic regions during the condensation process. Furthermore, this method could have a greater potential to align other liquids or living cells.

  • PDF

Integration of solution-processed polymer thin-film transistors for reflective liquid crystal applications

  • Kim, Sung-Jin;Kim, Min-Hoi;Suh, Min-Chul;Mo, Yeon-Gon;Chang, Seung-Wook;Lee, Sin-Doo
    • Journal of Information Display
    • /
    • v.12 no.4
    • /
    • pp.205-208
    • /
    • 2011
  • Herein, the integration of solution-processed polymer thin-film transistors (TFTs) that were fabricated using selective wettability through ultraviolet (UV) exposure into a reflective liquid crystal display is demonstrated. From the experimental results of energy-dispersive spectroscopy, the composition of carbon and fluorine enhancing the hydrophobicity in the polymer chains was found to play a critical role in the wetting selectivity upon UV exposure. The polymer TFTs fabricated through the wettability-patterning process exhibited long-term stability and reliability. This wetting-selectivity-based patterning technique will be useful for constructing different types of solution-processed electronic and optoelectronic devices.