Chiisanoside, A Lupane Triterpenoid from Acanthopanax Leaves, Stimulates Proliferation and Differentiation of Osteoblastic MC3T3-E1 Cells

  • Choi, Eun-Mi (College of Pharmacy, Chungnam National University) ;
  • Ding, Yan (College of Pharmacy, Chungnam National University) ;
  • Nguyen, Huu Tung (College of Pharmacy, Chungnam National University) ;
  • Park, Sang-Hyuk (College of Pharmacy, Chungnam National University) ;
  • Nguyen, Xuan Nhiem (College of Pharmacy, Chungnam National University) ;
  • Liang, Chun (College of Pharmacy, Chungnam National University) ;
  • Lee, Jung-Joon (Molecular Cancer Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Kim, Young-Ho (College of Pharmacy, Chungnam National University)
  • Published : 2008.03.31

Abstract

The leaves of Acanthopanax species have traditionally been used as a tonic and a sedative as well as in the treatment of rheumatism and diabetes. Chiisanoside is the major active lupane triterpenoid of Acanthopanax leaves. To investigate the bioactivities of chiisanoside, which act on bone metabolism, the effects of chiisanoside on the function of osteoblastic MC3T3-E1 cells were studied. Chiisanoside $(0.02{\sim}20\;{\mu}M)$ significantly increased the growth of MC3T3-E1 cells and caused a significant elevation of alkaline phosphatase (ALP) activity, collagen content, and nodules mineralization in the cells (P < 0.05). The effect of chiisanoside (2 ${\mu}M$) in increasing ALP activity was completely prevented by the presence of tamoxifen, suggesting that the effect of chiisanoside might be partly estrogen receptor mediated. Moreover, cotreatment of p38 inhibitor SB203580 or JNK inhibitor SP600125 inhibited chiisanoside-mediated ALP upregulation, suggesting that the induction of differentiation by chiisanoside is associated with increased activation of p38 and JNK mitogen-activated protein kinases. Our data indicate that the enhancement of osteoblast function by chiisanoside may result in the prevention for osteoporosis.

Keywords

References

  1. Alekel, D.L., Germain, A.S., Peterson, C.T., Hanson, K.B., Stewart, J.W., and Toda, T., Isoflavone-rich soy protein isolate attenuates bone loss in the lumbar spine of perimenopausal women. Am. J. Clin. Nutr. 72, 844-852 (2000) https://doi.org/10.1093/ajcn/72.3.844
  2. Bae, E.A., Yook, C.S., Oh, O.J., Nohara, T., and Kim, D.H., Metabolism of chiisanoside from Acanthopanax divaricatus var. albeofructus by human intestinal bacteria and its relation to some biological activities. Biol. Pharm. Bull. 24, 582-585 (2001) https://doi.org/10.1248/bpb.24.582
  3. Bogoyevitch, M.A., Signaling via stress-activated mitogen activated protein kinases in the cardiovascular system. Cardiovasc. Res. 45, 826-842 (2000) https://doi.org/10.1016/S0008-6363(99)00386-7
  4. Brandi, M.L., Natural and synthetic isoflavones in the prevention and treatment of chronic diseases. Calcif. Tissue Int. 61, S5-S8 (1997) https://doi.org/10.1007/s002239900376
  5. Brzezinski, A. and Debi, A., Phytoestrogens: the 'natural' selective estrogen receptor modulators? Eur. J. Obstet. Ggynecol. Reprod. Biol. 85, 47-51 (1999) https://doi.org/10.1016/S0301-2115(98)00281-4
  6. Chattopadhyay, N., Yano, S., Tfelt-Hansen, J., Rooney, P., Kanuparthi, D., Bandyopadhyay, S., Ren, X., Terwilliger, E., and Brown, E.M., Mitogenic action of calcium-sensing receptor on rat calvarial osteoblasts. Endocrinol. 145, 3451-3462 (2004) https://doi.org/10.1210/en.2003-1127
  7. Cummings, S.R. and Melton, L.J., Epidemiology and outcomes of osteoporotic fractures. Lancet 359, 1761-1767 (2002) https://doi.org/10.1016/S0140-6736(02)08657-9
  8. Ducy, P., Schinke, T., and Karsenty, G., The osteoblast: a sophisticated fibroblast under central surveillance. Science 289, 1501-1504 (2000) https://doi.org/10.1126/science.289.5484.1501
  9. Guicheux, J., Lemonnier, J., Ghayor, C., Suzuki, A., Palmer, G., and Caverzasio, J., Activation of p38 mitogen-activated protein kinase and c-Jun-NH2-terminal kinase by BMP-2 and their implication in the stimulation of osteoblastic cell differentiation. J. Bone Miner. Res. 18, 2060-2068 (2003) https://doi.org/10.1359/jbmr.2003.18.11.2060
  10. Hahn, D.R., Kasai, R., Kim, J.H., Taniyasu, S., and Tanaka, O., A new glycosyl ester of a 3,4-seco-triterpene from Korean medicinal plant, Acanthopanax chiisanensis (Araliaceae). Chem. Pharm. Bull. 32, 1244-1247 (1984) https://doi.org/10.1248/cpb.32.1244
  11. Kang, J.S., Linh, P.T., Cai, X.F., Lee, J.J., and Kim, Y.H., Determination of chiisanoside in Acanthopanax species by high performance liquid chromatography. Nat. Prod. Sci. 9, 45-48 (2003)
  12. Kanno, S., Anuradha, C.D., and Hirano, S., Localization of zinc after in vitro mineralization in osteoblastic cells. Biol. Trace Elem. Res. 83, 39-47 (2001) https://doi.org/10.1385/BTER:83:1:39
  13. Kim, Y.O., Cho, D.H., Chung, H.J., Kim, J.H., Chang, S.Y., Yook, C.S., Yang, K.S., and Oh, O.J., Effects of lupane-triterpenoids on mitogeninduced proliferation of lymphocytes. Yakhak Hoeji 43, 208-213 (1999)
  14. Kleinerman, E.S., Lachman, L.B., Knowles, R.D., Snyderman, R., and Cianciolo, G.J., A synthetic peptide homologous to the envelope proteins of retroviruses inhibits monocyte-mediated killing by inactivating interleukin 1. J. Immunol. 139, 2329-2337 (1987)
  15. Lane, N.E. and Kelman, A., A review of anabolic therapies for osteoporosis. Arthritis Res. Ther. 5, 214-222 (2003) https://doi.org/10.1186/ar797
  16. Le, S., Connors, T.J., and Maroney, A.C., c-Jun N-terminal kinase specifically phosphorylates p66ShcA at serine 36 in response to ultraviolet irradiation. J. Biol. Chem. 276, 48332-48336 (2001) https://doi.org/10.1074/jbc.M106612200
  17. Lee, S.H., Kim, B.K., Cho, S.H., and Shin, K.H., Phytochemical constituents from the fruits of Acanthopanax sessiliflorus. Arch. Pharm. Res. 25, 280-284 (2002) https://doi.org/10.1007/BF02976626
  18. Oh, O.J., Chang, S.Y., Yook, C.S., Yang, K.S., Park, S.Y., and Nohara, T., Two 3,4-seco-lupane triterpenes from leaves of Acanthopanax divaricatus var. albeofructus. Chem. Pharm. Bull. 48, 879-881 (2000) https://doi.org/10.1248/cpb.48.879
  19. Persson, I., Weiderpass, E., Bergkvist, L., Bergstrom, R., and Schairer, C., Ricks of breast and endometrial cancer after estrogen-progestin replacement. Cancer Causes Control 10, 253-260 (1999) https://doi.org/10.1023/A:1008909128110
  20. Seko, Y., Tobe, K., Ueki, K., Kadowaki, T., and Yazaki, Y., Hypoxia and hypoxia/reoxygenation activate Raf-1, mitogen-activated protein kinase kinase, mitogen-activated protein kinases, and S6 kinase in cultured rat cardiac myocytes. Circ. Res. 78, 82-90 (1996) https://doi.org/10.1161/01.RES.78.1.82
  21. Sowa, H., Kaji, H., Yamaguchi, T., Sugimoto, T., and Chihara, K., Smad3 promotes alkaline phosphatase activity and mineralization of osteoblastic MC3T3-E1 cells. J. Bone Miner. Res. 17, 1190-1199 (2002) https://doi.org/10.1359/jbmr.2002.17.7.1190
  22. Sudo, H., Kodama, H., Amagi, Y., Yamamoto, S., and Kasai, S., In vitro differentiation and calcification in a new clonal osteogenic cell line derived from newborn mouse calvaria. J. Cell Biol. 96, 191-198 (1983) https://doi.org/10.1083/jcb.96.1.191
  23. Tamir, S., Eizenberg, M., Somjen, D., Stern, N., Shelach, R., and Kaye, A., Estrogenic and antiproliferative properties of glabridin from licorice in human breast cancer cells. Cancer Res. 60, 5704-5709 (2000)
  24. Tazoe, M., Mogi, M., Goto, S., and Togari, A., Involvement of p38 MAP kinase in bone morphogenetic protein-4-induced osteoprotegerin in mouse bone-marrow-derived stromal cells. Arch. Oral Biol. 48, 615- 619 (2003) https://doi.org/10.1016/S0003-9969(03)00100-6
  25. Tham, D.M., Gardner, C.D., and Haskell, W.L., Clinical review 97: potential health benefits of dietary phytoestrogens: a review of the clinical, epidemiological, and mechanistic evidence. Eur. J. Clin. Nutr. 52, 850-855 (1998) https://doi.org/10.1038/sj.ejcn.1600659
  26. Tullberg-Reinert, H. and Jundt, G., In situ measurement of collagen synthesis by human bone cells with a Sirius Red-based colorimetric microassay: effects of transforming growth factor $\beta$2 and ascorbic acid 2-phosphate. Histochem. Cell Biol. 112, 271-276 (1999)
  27. Widmann, C., Gibson, S., Jarpe, M.B., and Johnson, G.L., Mitogen activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol. Rev. 79, 143-180 (1999) https://doi.org/10.1152/physrev.1999.79.1.143