Diversity of Problem Solving Methods about a Problem of Area from the History of Mathematics by High Achieving Elementary School Students

수학사의 한 넓이 문제에 대한 초등 수학 우수아의 풀이 다양성 탐색

  • Chang, Hye-Won (Dep. Of Math. Education, Chinju National University of Education)
  • 장혜원 (진주교육대학교 수학교육과)
  • Published : 2008.11.30

Abstract

This study investigates how high achievers solve a given mathematical problem. The problem, which comes from 'SanHakIbMun', a Korean mathematics book from eighteenth century, is not used in regular courses of study. It requires students to determine the area of a gnomon given four dimensions(4,14,4,22). The subjects are 84 sixth grade elementary school students who, at the recommendation of his/her school principal, participated in the mathematics competition held by J university. The methods used by these students can be classified into two approaches: numerical and decomposing-reconstructing, which are subdivided into three and six methods respectively. Of special note are a method which assumes algebraic feature, and some methods which appear in the history of eastern mathematics. Based on the result, we may observe a great variance in methods used, despite the fact that nearly half of the subject group used the numerical approach.

이 연구는 수학교육에서 문제해결의 중요성에 근거하여 초등 수학 우수아들의 문제 푸는 방법에 대해 조사하였다. 조선시대 수학책인 <산학입문>에서 발췌하여 수정한 문제인 노몬의 넓이 구하는 문제가 주어질 때 84명의 초등 수학 우수아의 반응 및 풀이 과정을 분석하여 분류하였다. 이 중 정답을 얻은 학생들(73.8%)이 사용한 접근 방법은 크게 수치적 접근과 재구성 접근의 두 가지로 나뉜다. 두 접근은 다시 각각 세 가지, 여섯 가지 방법으로 세분할 수 있어 각각의 특징을 학생 사례와 함께 고찰하였다. 그 중 동양 수학사에서 이용된 방법을 포함하여 도형의 재구성을 통한 방법은 특히 주목할 만하다 전체 정답자의 절반에 가까운 수가 수치적 접근을 이용하였음에도 불구하고 동일 문제에 대한 다양한 풀이를 관찰할 수 있었고, 그 분석을 통해 학생들의 사고 특징을 파악할 수 있었다.

Keywords