DOI QR코드

DOI QR Code

Feasibility Test for Radical reactions in Organic Light Emitting Diode

유기 발광 다이오드 내부의 라디칼 반응 가능성 검사

  • Published : 2008.04.01

Abstract

Feasibility test for radical reactions in organic light emitting diode(OLED) has been applied on OLED consisting of hole transport layer(HTL) and electron transport layer(ETL). Organic molecules such as 4,4',-Bis[N-(1-naphthyl)-N-phenylamino] biphenyl(NPD) and 4,4',4"-tris(3-methylphenylphenylamino)triphenylamine(m-MTDATA) are chosen for hole transport layer(HTL) and Bathocuproine(BCP) for electron transport layer(ETL) in this study. Informations on energy and shape of frontier orbitals and data on radical reactions of simple aromatics from semiconductor($TiO_2$) photocatalysis have provided basis for determining feasibility for radical reactions in OLED. The outcome of our feasibility test would be useful in designing optimum molecule for organic layer with a view to extending the lifetime of OLED.

Keywords

References

  1. L. M. Do, E. M. Han, Y. Niidome, M. Fujihira, T. Kanno, S. Yoshida, A. Maeda, and A. J. Ikushima, "Obervation of degradation processes of Al electrodes in organic electroluminescence devices by electroluminescence microscopy, atomic force microscopy, scanning electron microscopy, and Auger electron spectroscopy," J. Appl. Phys., vol. 76, no. 9, pp. 5118-5121, November 1994 https://doi.org/10.1063/1.357224
  2. O. d'Hennezel, P. Pichat, and D. F. Ollis, "Benzene and toluene gas-phase photocatalytic degradation over $H_2O$ and HCL pretreated $TiO_2$: by-products and mechanisms," J. Photochemistry and Photobiology A: Chemistry, vol. 118, pp. 197-204, 1998 https://doi.org/10.1016/S1010-6030(98)00366-9
  3. H. Einaga, S. Futamura, and T. Ibusuki, "Photocatalytic decomposition of benzene over TiO2 in a humidified airstream," Phys. Chem. Chem. Phys., vol. 1, pp. 4903-4908, 1999 https://doi.org/10.1039/a906214i
  4. H. Kim, E. Lee, J. Lee, C. Han, J. Ha, and Y. Shul, "Discharge photoelectrocatalytic system for the degradation of aromatics," Intern. J. Photoenergy, vol. 5, no. 1, pp. 3-6, 2003 https://doi.org/10.1155/S1110662X03000035
  5. Spartan '06 version 1.0.1: Wavefunction, Inc., Von Karman Ave., 370, Irvine, CA 92715 U.S.A. 2006
  6. S. Leytner and J. T. Hupp, "Evaluation of the energetics of electron trap states at the nanocrystalline titanium dioxide/ aqueous solution interface via time-resolved photoacoustic spectroscopy," Chemical Physics Letters, vol. 330, pp. 231-236, November 2000 https://doi.org/10.1016/S0009-2614(00)01112-X
  7. B. H. Cumpston and K. F. Jensen, "Photo-oxidation of polymers used in electroluminescent devices," Synthetic Metals, vol. 73, pp. 195-199, 1995 https://doi.org/10.1016/0379-6779(95)80015-8
  8. T. J. Savenije and A. Goossens, "Hole transport in porphyrin thin film," Physical Review B, vol. 64, no. 115323, pp. 1-9, August 2001
  9. S. Yang, L. Lou, K. Wang, and Y. Chen, "Shift of initial mechanism in $TiO_2$-assisted photocatalytic process," Applied Catalysis, A: General , vol. 301, pp. 152-157, 2006
  10. Y. Shirota, Y. Kuwabara, H. Inada, T. Wakimoto, H. Nakada, Y. Yonemoto, S. Kawami, and K. Imai, "Multilayered organic electroluminescent device using a novel starburst molecule, 4,4',4"-tris(3-methylphenylphenylamino)triphenylamine, as a hole transport material," Appl. Phys. Lett., vol. 65, no. 7, August 1994
  11. D. Y. Kondakov, W. C. Lenhart, and W. F. Nichols, "Operational degradation od organic light-emitting diodes: Mechanism and identification of chemical products," J. Appl. Phys., vol. 101, no. 021512, pp. 1-7, 2007
  12. M. Kiy, P. Losio, I. Biaggio, M. Koehler, A. Tapponnier, and P. Gunter, "Observation of Mott Gurney law in tris (8- hydroxyquinoline) aluminum films," Appl. Phys. Lett., vol. 80, no. 7, pp. 1198-1200, February 2002 https://doi.org/10.1063/1.1449527
  13. Y. Harano, H. Sato, and F. Hirata, "A theoretical study on a Diels-Alder reaction in ambient and supercritical water: viewing solvent effects through frontier orbitals," Chemical Physics, vol. 258, pp. 151-161, 2000 https://doi.org/10.1016/S0301-0104(00)00158-0
  14. K. Fukui, H. Fujimoto, Frontier orbitals and reaction paths(selected papers of K. Fukui), World Scientific, Singapore, 1997
  15. I. Flemming, Frontier orbitals and organic chemical reactions, Wiley-Interscience, Chichester, 1976
  16. A. Rauk, Orbital interaction theory of organic chemistry 2nd ed., Wiley-Interscience, New York, 2001
  17. R. J. Holmes, B. W. D'Andrade, and S. R. Forrest, "Efficient, deep-blue organic electrophosphorescence by guest charge trapping," Appl. Phys. Lett., vol. 84, no. 18, pp. 3818-3820, November 2003
  18. L. Do, K. Kim, and T. Zyung, "In situ investigation of degradation in polymeric electroluminescent devices using timeresolved confocal laser scanning microscope," App. Phys. Lett., vol. 70, no. 25, pp. 3470-3472, June 1997 https://doi.org/10.1063/1.118516

Cited by

  1. A Study of Photo and Photocatalytic Degradation of Arylamine with Respect to Design of Organic Light-Emitting Diode vol.695, pp.1662-9752, 2011, https://doi.org/10.4028/www.scientific.net/MSF.695.194