참고문헌
- M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards Applied Mathematics Series, 55 Superintendent of Documents, U.S. Government Printing Office, Washington, D.C., 1965
- H. Alzer, Inequalities for the gamma function, Proc. Amer. Math. Soc. 128 (2000), no. 1, 141-147 https://doi.org/10.1090/S0002-9939-99-04993-X
- H. Alzer, On some inequalities for the gamma and psi functions, Math. Comp. 66 (1997), no. 217, 373-389 https://doi.org/10.1090/S0025-5718-97-00807-7
- H. Alzer, Sharp inequalities for the digamma and polygamma functions, Forum Math. 16 (2004), no. 2, 181-221 https://doi.org/10.1515/form.2004.009
- H. Alzer, Some gamma function inequalities, Math. Comp. 60 (1993), no. 201, 337-346 https://doi.org/10.2307/2153171
- H. Alzer and C. Berg, Some classes of completely monotonic functions, Ann. Acad. Sci. Fenn. Math. 27 (2002), no. 2, 445-460
- G. D. Anderson and S.-L. Qiu, A monotoneity property of the gamma function, Proc. Amer. Math. Soc. 125 (1997), no. 11, 3355-3362 https://doi.org/10.1090/S0002-9939-97-04152-X
- R. D. Atanassov and U. V. Tsoukrovski, Some properties of a class of logarithmically completely monotonic functions, C. R. Acad. Bulgare Sci. 41 (1988), no. 2, 21-23
- C. Berg, Integral representation of some functions related to the gamma function, Mediterr. J. Math. 1 (2004), no. 4, 433-439 https://doi.org/10.1007/s00009-004-0022-6
- J. Bustoz and M. E. H. Ismail, On gamma function inequalities, Math. Comp. 47 (1986), no. 176, 659-667 https://doi.org/10.2307/2008180
- Ch.-P. Chen, Monotonicity and convexity for the gamma function, J. Inequal. Pure Appl. Math. 6 (2005), no. 4, Art. 100
- Available online at http://jipam.vu.edu.au/article.php?sid=574
- Ch.-P. Chen and F. Qi, Logarithmically completely monotonic functions relating to the gamma function, J. Math. Anal. Appl. 321 (2006), no. 1, 405-411 https://doi.org/10.1016/j.jmaa.2005.08.056
- Ch.-P. Chen and F. Qi, Logarithmically complete monotonicity properties for the gamma functions, Aust. J. Math. Anal. Appl. 2 (2005), no. 2, Art. 8
- Available online at http://ajmaa.org/cgi-bin/paper.pl?string=v2n2/V2I2P8.tex
- Ch.-P. Chen and F. Qi, Logarithmically completely monotonic ratios of mean values and an application, Glob. J. Math. Math. Sci. 1 (2005), no. 1, 71-76
- Ch.-P. Chen and F. Qi, Logarithmically completely monotonic ratios of mean values and an application, RGMIA Res. Rep. Coll. 8 (2005), no. 1, Art. 18, 147-152
- Available online at http://rgmia.vu.edu.au/v8n1.html
- W. E. Clark and M. E. H. Ismail, Inequalities involving gamma and psi functions, Anal. Appl. (Singap.) 1 (2003), no. 1, 129-140 https://doi.org/10.1142/S0219530503000041
- M. J. Cloud and B. C. Drachman, Inequalities with Applications to Engineering, Springer Verlag, 1998
- A. Elbert and A. Laforgia, On some properties of the gamma function, Proc. Amer. Math. Soc. 128 (2000), no. 9, 2667-2673 https://doi.org/10.1090/S0002-9939-00-05520-9
- N. Elezovic, C. Giordano, and J. Pecaric, The best bounds in Gautschi's inequality, Math. Inequal. Appl. 3 (2000), no. 2, 239-252
- A. M. Fink, Kolmogorov-Landau inequalities for monotone functions, J. Math. Anal. Appl. 90 (1982), no. 1, 251-258 https://doi.org/10.1016/0022-247X(82)90057-9
- A. Z. Grinshpan and M. E. H. Ismail, Completely monotonic functions involving the gamma and q-gamma functions, Proc. Amer. Math. Soc. 134 (2006), no. 4, 1153-1160 https://doi.org/10.1090/S0002-9939-05-08050-0
- R. A. Horn, On infinitely divisible matrices, kernels, and functions, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 8 (1967), 219-230 https://doi.org/10.1007/BF00531524
- M. E. H. Ismail, L. Lorch, and M. E. Muldoon, Completely monotonic functions associated with the gamma function and its q-analogues, J. Math. Anal. Appl. 116 (1986), no. 1, 1-9 https://doi.org/10.1016/0022-247X(86)90042-9
- D. Kershaw, Some extensions of W. Gautschi's inequalities for the gamma function, Math. Comp. 41 (1983), no. 164, 607-611 https://doi.org/10.2307/2007697
- A. Laforgia, Further inequalities for the gamma function, Math. Comp. 42 (1984), no. 166, 597-600 https://doi.org/10.2307/2007604
- J. Lew, J. Frauenthal, and N. Keyfitz, On the average distances in a circular disc, SIAM Rev. 20 (1978), no. 3, 584-592 https://doi.org/10.1137/1020073
- A.-J. Li, W.-Zh. Zhao, and Ch.-P. Chen, Logarithmically complete monotonicity and Shur-convexity for some ratios of gamma functions, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. 17 (2006), 88-92
- W. Magnus, F. Oberhettinger, and R. P. Soni, Formulas and Theorems for the Special Functions of Mathematical Physics, Third enlarged edition. Die Grundlehren der mathematischen Wissenschaften, Band 52 Springer-Verlag New York, Inc., New York 1966
- M. E. Muldoon, Some monotonicity properties and characterizations of the gamma function, Aequationes Math. 18 (1978), no. 1-2, 54-63 https://doi.org/10.1007/BF01844067
- F. Qi, A class of logarithmically completely monotonic functions and the best bounds in the first Kershaw's double inequality, J. Comput. Appl. Math. 206 (2007), no. 2, 1007-1014 https://doi.org/10.1016/j.cam.2006.09.005
- F. Qi, Certain logarithmically N-alternating monotonic functions involving gamma and q-gamma functions, Nonlinear Funct. Anal. Appl. 13 (2008), no. 1, in press
- F. Qi, Three classes of logarithmically completely monotonic functions involving gamma and psi functions, Integral Transforms Spec. Funct. 18 (2007), no. 7, 503-509 https://doi.org/10.1080/10652460701358976
- F. Qi, J. Cao, and D.-W. Niu, Four logarithmically completely monotonic functions involving gamma function and originating from problems of traffic flow, RGMIA Res. Rep. Coll. 9 (2006), no. 3, Art. 9
- Available online at http://rgmia.vu.edu.au/v9n3.html
- F. Qi and Ch.-P. Chen, A complete monotonicity property of the gamma function, J. Math. Anal. Appl. 296 (2004), no. 2, 603-607 https://doi.org/10.1016/j.jmaa.2004.04.026
- F. Qi, Sh.-X. Chen, and W.-S. Cheung, Logarithmically completely monotonic functions concerning gamma and digamma functions, Integral Transforms Spec. Funct. 18 (2007), no. 6, 435-443 https://doi.org/10.1080/10652460701318418
- F. Qi and B.-N. Guo, A class of logarithmically completely monotonic functions and the best bounds in the second Kershaw's double inequality, J. Comput. Appl. Math. 212 (2008), no. 2, 444-456 https://doi.org/10.1016/j.cam.2006.12.022
- F. Qi and B.-N. Guo, A class of logarithmically completely monotonic functions and the best bounds in the second Kershaw's double inequality, RGMIA Res. Rep. Coll. 10 (2007), no. 2, Art. 5
- Available online at http://rgmia.vu.edu.au/v10n2.html
- F. Qi and B.-N. Guo, Complete monotonicities of functions involving the gamma and digamma functions, RGMIA Res. Rep. Coll. 7 (2004), no. 1, Art. 8, 63-72
- Available online at http://rgmia.vu.edu.au/v7n1.html
- F. Qi and B.-N. Guo, Wendel-Gautschi-Kershaw's inequalities and sufficient and necessary conditions that a class of functions involving ratio of gamma functions are logarithmically completely monotonic, RGMIA Res. Rep. Coll. 10 (2007), no. 1, Art. 2
- Available online at http://rgmia.vu.edu.au/v10n1.html
- F. Qi, B.-N. Guo, and Ch.-P. Chen, The best bounds in Gautschi-Kershaw inequalities, Math. Inequal. Appl. 9 (2006), no. 3, 427-436
- F. Qi, B.-N. Guo, and Ch.-P. Chen, Some completely monotonic functions involving the gamma and polygamma functions, RGMIA Res. Rep. Coll. 7 (2004), no. 1, Art. 5, 31-36
- Available online at http://rgmia.vu.edu.au/v7n1.html
- F. Qi, B.-N. Guo, and Ch.-P. Chen, Some completely monotonic functions involving the gamma and polygamma functions, J. Aust. Math. Soc. 80 (2006), no. 1, 81-88 https://doi.org/10.1017/S1446788700011393
- F. Qi, D.-W. Niu, and J. Cao, Logarithmically completely monotonic functions involving gamma and polygamma functions, J. Math. Anal. Approx. Theory 1 (2006), no. 1, 66-74
- F. Qi, Q. Yang, and W. Li, Two logarithmically completely monotonic functions connected with gamma function, Integral Transforms Spec. Funct. 17 (2006), no. 7, 539-542 https://doi.org/10.1080/10652460500422379
- J. Sandor, On certain inequalities for the Gamma function, RGMIA Res. Rep. Coll. 9 (2006), no. 1, Art. 11, 115-117
- Available online at http://rgmia.vu.edu.au/v9n1.html
- H. van Haeringen, Completely Monotonic and Related Functions, Report 93-108, Faculty of Technical Mathematics and Informatics, Delft University of Technology, Delft, The Netherlands, 1993
- Zh.-X. Wang and D.-R. Guo, Special Functions, Translated from the Chinese by Guo and X. J. Xia. World Scientific Publishing Co., Inc., Teaneck, NJ, 1989
- Zh.-X. Wang and D.-R. Guo, Teshu Hanshu Gailun, The Series of Advanced Physics of Peking University, Peking University Press, Beijing, China, 2000. (Chinese)
- J. G. Wendel, Note on the gamma function, Amer. Math. Monthly 55 (1948), 563-564 https://doi.org/10.2307/2304460
- D. V. Widder, The Laplace Transform, Princeton Mathematical Series, v. 6. Princeton University Press, Princeton, N. J., 1941
피인용 문헌
- Logarithmically Complete Monotonicity Properties Relating to the Gamma Function vol.2011, 2011, https://doi.org/10.1155/2011/896483
- Asian options and meromorphic Lévy processes vol.18, pp.4, 2014, https://doi.org/10.1007/s00780-014-0237-8
- Bounds for the Ratio of Two Gamma Functions vol.2010, 2010, https://doi.org/10.1155/2010/493058
- Multivariate Regular Variation of Discrete Mass Functions with Applications to Preferential Attachment Networks 2016, https://doi.org/10.1007/s11009-016-9503-x
- A class of logarithmically completely monotonic functions and application to the best bounds in the second Gautschi–Kershaw’s inequality vol.224, pp.2, 2009, https://doi.org/10.1016/j.cam.2008.05.030
- Wendel’s and Gautschi’s inequalities: Refinements, extensions, and a class of logarithmically completely monotonic functions vol.205, pp.1, 2008, https://doi.org/10.1016/j.amc.2008.07.005
- A Class of Logarithmically Completely Monotonic Functions Associated with a Gamma Function vol.2010, pp.1, 2010, https://doi.org/10.1155/2010/392431